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Abstract—Indoor vehicle localization is an underlying tech-
nology for realizing Autonomous Valet Parking (AVP), which
demands high accuracy and reliability. However, existing local-
ization technologies, such as GPS, WiFi, Bluetooth, suffer from
either low availability or high cost, which are not practical in the
real world. In order to put AVP into practice, We desperately
need an efficient and reliable indoor vehicle localization technol-
ogy. In this paper, we propose a Deep learning and FM fingerprint
map based indoor vehicle Localization method, namely DeFLoc,
which leverages FM signals to achieve accurate and practical
indoor localization. In order to reduce the workload of the FM
fingerprints collecting process, DeFLoc uses partially uniform
sampling to decrease sample data volume and reconstructs
the FM fingerprint map from collected incomplete fingerprints
precisely using a dedicated deep Convolutional Neural Network
(CNN). To alleviate the influence of signal distortions in some
FM frequencies, we further design smooth layers in the neural
network for improving the accuracy of map reconstruction.
Moreover, we devise a continuous vehicle localization algorithm
by considering the preferences of vehicle movements to assist
us to calibrate localization. We implemented a prototype of
DeFLoc and conducted extensive experiments both in simulation
and practice. Evaluation results show that our proposed recon-
struction model improves accuracy by 40% over conventional
matrix completion methods even under the 60% data missing
rate. With the precisely reconstructed fingerprint map, DeFLoc
achieves over 90% localization accuracy, which indicates DeFLoc
can realize accurate and practical indoor vehicle localization.

Index Terms— Autonomous valet parking, convolutional neural
network, indoor vehicle localization, fingerprint map reconstruc-
tion, FM.

I. INTRODUCTION

UTONOMOUS Valet Parking (AVP) is emerging with
the development of automatic driving. According to
different automatic parking capabilities, AVP can be divided
into 5 levels [1], where AVP at level O refers to totally manual
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parking. AVP at level 1 supports limited autonomous parking
but still requires drivers staying in the vehicle to supervise
the parking process. Currently, AVP at level 2 has grown
into a proven technique and has been deployed on many
commodity intelligent vehicles, which is benefited from the
development of various advanced sensors including cameras,
Inertial Measurement Units (IMU), and even LiDAR. Vehicles
with level 2 AVP automatically seek a nearby parking slot
and park themselves into the slot without human interference.
AVP at higher levels are expected to realize that drivers just
leave their cars at the entrance of the parking area (level 3)
or even anywhere in the smart city (level 4), and vehicles
will automatically find parking spaces. Although AVP at level
3 is expected to emerge in the near future, a higher level
AVP indeed requires more technology breakthroughs to evolve
into a proven technique. Given that many parking areas are
in indoor environments, a robust indoor vehicle localization
technique is critical to bring AVP to a higher level. However,
it is non-trivial to achieve accurate indoor vehicle localization,
making it one of the bottlenecks that hinder the AVP evolution
from level 2 to level 3.

Global Navigation Satellite Systems (GNSS), such as
GPS [2], is the most commonly used method for vehicle
localization in modern life. However, GPS always performs
badly in an indoor environment. Even though there are a
variety of Assisted GPS (A-GPS) solutions utilizing cellu-
lar networks as an assistance approach for indoor local-
ization [3], [4], they still suffer a large localization error.
Since the number of satellites in the line of sight of the
vehicle should be no less than three for precise local-
ization, it is difficult to be guaranteed under a partially
blocked sky.

One type of indoor localization method is based on short-
distance communication, such as WiFi and RFID [5], which
have been deeply investigated. However, these methods are
still not feasible for improving AVP. Take WiFi as an example,
to implement WiFi-based indoor localization, there should
deploy adequate WiFi Access Points (AP) that cover the
whole parking area. The more APs that vehicles can detect
in a preselected position, the higher accuracy the method
can achieve. Thus, the deployment of WiFi APs usually has
a certain redundancy to guarantee the required localization
accuracy. Considering that WiFi is used for communication
but not localization, to realize WiFi coverage in large-scale
indoor parking areas is a waste of resources. It is also not
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cost-effective to increase the construction cost of parking areas
for supporting a higher level AVP.

Another type of indoor localization method utilizes
Frequency Modulation (FM) fingerprint to achieve
deployment-free indoor localization [6]-[8]. Compared
with A-GPS and short-distance-communication-based indoor
localization methods, FM-based localization methods cover
shortages of low availability and high cost in indoor
environments. Firstly, FM-based indoor localization methods
utilize public radio stations, which are accessible in
an extremely large scope, to construct FM fingerprint
maps. These deployment-free methods largely reduce
the deployment and maintenance costs of parking area
infrastructures. Secondly, the FM receiver is one of the
essential devices equipped in various vehicles. Therefore,
FM-based indoor vehicle localization requires no extra
equipment to be installed on vehicles. Moreover, FM radio
signals are more stable and have weaker time-variance than
those short-distance communication signals [7]. FM signals
usually have strong penetrability, so that they can be detected
even in deep underground parking areas.

Although previous works [6]-[8] have made some advances
in FM-based indoor localization, they are still not applicable to
AVP due to four main deficiencies. Firstly, these works ignored
the heavy workload of fingerprint map construction. Given
that the fingerprint map requires periodically re-sampling for
location calibration, it can be time-consuming to construct and
maintain the fingerprint map in the long term. Secondly, some
works assumed that FM signals are stable enough so that
their features can be described by simple models. However,
it is not practical in indoor parking environments because of
the existence of multi-path effect and interference. Thirdly,
most works were implemented on expensive Software Defined
Radio (SDR) devices, such as USRP, which are impossible
to appear on vehicles. Moreover, some works sample too
few reference points, which are hard to support accurate
localization in the large indoor parking area. These limitations
make existing FM fingerprint-based localization schemes still
not practical in indoor parking scenarios.

In this paper, we propose a Deep learning and FM finger-
print map based indoor vehicle Localization method, namely
DeFLoc, which leverages FM signals to achieve accurate and
practical indoor localization. DeFLoc contains two working
phases: offline phase and online phase. In the offline phase,
an FM fingerprint map would be constructed. In the online
phase, FM fingerprints measured by vehicles are matched
with the constructed fingerprint map, to determine vehicles’
physical positions.

To address the shortcomings in previous works and make
DeFLoc practical in AVP, we design several advanced tech-
niques to realize accurate and efficient indoor vehicle local-
ization. Firstly, to reduce the workload of fingerprint map
construction in the offline phase, we partially sample fin-
gerprints on each reference point and then reconstruct the
fingerprint map from these collected incomplete fingerprints,
which can be regarded as a matrix completion problem.
However, conventional matrix completion methods suffer large
errors and thus cannot meet the high accuracy requirement of
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AVP. To achieve a precise reconstruction, a dedicated deep
Convolutional Neural Network (CNN) is devised to reconstruct
the fingerprint map from the collected incomplete fingerprints.
Secondly, we design smooth layers in the neural network
with considering different kinds of FM frequencies, to further
eliminate the effect of FM signal distortions. Thirdly, we also
design a continuous vehicle localization algorithm, which
takes preferences of vehicle movements in indoor parking
areas into account, to reduce the localization error in the online
phase. We conclude our main contributions as follows:

e We propose an accurate and practical FM
fingerprint-based indoor vehicle localization, named
DeFLoc, to promote AVP to a higher level. To our
best knowledge, this is the first work that considers the
efficiency of FM fingerprint map construction in indoor
vehicle localization.

o We design a dedicated deep neural network to reconstruct
FM fingerprint map precisely from limited sampling.
To alleviate the effect of the multipath and environmental
interference, we embed smooth layers in the network
according to the features of FM signal profiles. We also
design a continuous vehicle localization algorithm to
reduce the localization error in the online phase.

« We implemented a prototype of DeFLoc and evaluated
the prototype using a dataset collected from the real
world. Experiment results show that our proposed method
improves reconstruction accuracy by 40% over conven-
tional methods under the 60% data missing rate. Mean-
while, our proposed network model is highly lightweight
and can be deployed on edge servers and even terminal
devices. What’s more, DeFLoc can still achieve more than
90% localization accuracy under the 60% data missing
rate.

The rest of the paper is organized as follows. Section II
briefly reviews some related works. We give preliminaries and
problem definitions in Section III. In Section IV, we introduce
the detailed design of DeFLoc. Evaluation settings and results
are discussed in Section V. Lastly, we conclude this paper in
Section VI.

II. RELATED WORK

We review related works in two aspects: fingerprint-based
indoor localization and matrix completion, which are discussed
in the following.

A. Fingerprint Based Indoor Localization Technology

Indoor localization technologies mainly can be divided
into distance-based and fingerprint-based ones. RADAR [9],
Bluepass [10], ArrayTrack [11], and ToneTrack [12] are
known as distance-based schemes. Fingerprint-based schemes
include Horus [13], HiLoc [14], RadioLoc [8], and so forth.

Experiments have shown that fingerprint-based meth-
ods usually achieve more accurate localization [15]. Many
fingerprint-based indoor localization methods that use WiFi,
Bluetooth or other communication technologies have been
proposed in academia.
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Currently, WiFi is still the most commonly used technology
for indoor localization. For example, Xiong and Jamieson [11]
proposed a WiFi-based indoor localization system, named
ArrayTrack, which can achieve sub-meter accuracy by uti-
lizing the WiFi Multi-Input Multi-Output (MIMO) prop-
erty. Wu et al. [16] leveraged WiFi Channel State Infor-
mation (CSI) to describe a WiFi propagation model and
build a fingerprint-based localization system. In BarFi [17],
barometer sensors were used as the complementary of WiFi
to realize more accurate localization. There are some other
attempts to improve WiFi localization accuracy through peer
assistance [18] or considering the speed of clients [19].
Yang et al. [20] also took human impacts on WiFi signals into
account and proposed LiFS to eliminate the interference by
exploiting user motions from mobile phones.

Besides WiFi, other communication technologies such as
RFID, Bluetooth, are also used for indoor localization. For
example, Liu et al. [21] attached RFID tags on mobile robots
to help locate robots themselves. Bluetooth and Bluetooth
Low Energy (BLE) are also utilized to locate users by using
fingerprint maps [22], [23]. In addition, 4G LTE can provide
a rough localization, while it achieves less accuracy compared
with the above technologies [24].

Considering the high cost of the deployment and main-
tenance of infrastructures, e.g., WiFi APs, RFID readers,
the aforementioned methods are impractical for large-scale
indoor parking areas. Thus, the deployment-free FM-based
indoor localization technology has attracted researchers’ atten-
tion. For example, Chen et al. [7] confirmed the feasibility
of indoor localization using FM radio through extensive
experiments and found that FM radio signal shows weaker
time-variance than WiFi. Yoon et al. [6] constructed a com-
plicated FM indoor propagation model that considers the
changes in indoor environments. Chen et al. [8] designed an
all-terrain FM-based localization method, called Radioloc,
which considers the impact of multi-path as well as weather
conditions. In RadioLoc, a novel data processing framework
was designed and implemented on the USRP SDR board,
and manually picked features are selected to determine the
position.

Although these FM fingerprint-based localization meth-
ods are promising, they are still not practical for indoor
vehicle localization. Some of these works even rely on the
assistance of other signal sources, such as WiFi, to realize
an accurate localization, which runs counter to the original
intent of deployment-free methods. Besides, they ignore the
heavy workload of fingerprint map construction, which can
be time-consuming in practice.

B. Matrix Completion

Matrix completion [25] methods have been applied widely
for recovering missing data in incomplete matrices. The goal
of matrix completion is to minimize recovery error to recon-
struct a matrix that is as approximate to the original one as
possible.

K-Nearest Neighbors (KNN) [26] is a classical and simple
method for matrix completion. It uses the K nearest neighbors
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of a missing point for interpolation. Singular Value Decom-
position (SVD) also works well in matrix completion when
the matrix has a low-rank property [27]. SVD decomposes
a matrix M € R™*" into a matrix multiplication of three
matrices, i.e.M = UZVT, where U € R"™ ™y ¢ Rmn
and ¥ € R™*", U and V are both orthogonal matrices that
satisfy UUT = I and VVT = I. ¥ is a diagonal matrix
whose elements are zeros except for those singular values on
diagonal. The rank of a matrix is exactly the number of its
non-zero singular values. When the rank of M is low, the
corresponding X has very few non-zero values on its diagonal.
The SVD-based method is common in matrix completion. For
example, Iterative SVD [28] method was proposed to complete
the matrix with noise; Mazumder et al. [29] extended SVD by
leveraging iterative soft threshold.

With the rapid development of deep learning, researchers
begin to explore Deep Neural Networks (DNN) for matrix
completion [30], [30], [31]. Deep learning based methods have
shown strength in matrix completion. Since a deep network
structure has a great characterization ability and supports
non-linear transformations in a tensor level, which covers the
shortages of conventional matrix completion methods.

Matrix completion methods are used in many real sce-
narios, including video stream recovery [32], [33], compres-
sive sensing [34], recommender system [35], and transfer
learning [36]. Researchers also apply matrix completion on
fingerprint map reconstruction. Liu et al. [37] proposed a
two-phase adaptive sampling strategy by analyzing at a tensor
level. Gu et al. [38] combined Sparsity Rank Singular Value
Decomposition (SRSVD) with KNN algorithm to recover
WiFi fingerprint map and thus reducing fingerprint collec-
tion. Cheng et al. [39] designed a mobile indoor localization
scheme that adopts a matrix completion approach to efficiently
utilize collected information.

These approaches are mainly designed for WiFi-based
indoor localization. Due to the stronger multi-path effect of
FM compared to WiFi, the reconstruction of FM fingerprint
maps requires a dedicated design. Many works on fingerprint
map reconstruction are based on low-rank assumptions of
fingerprint maps. However, FM fingerprint map may not show
a perfect low-rank property. Fig. 1 shows the ordered singular
values of an FM fingerprint map collected in our experiment.
Note that the y-axis is on a logarithmic scale. The first several
singular values are extremely large, and the rest of the singular
values are non-zero, which is known as the long-tail effect.
This reveals the reason that conventional matrix completion
methods do not perform ideally on recovering FM fingerprint
maps.

II1. BACKGROUND AND DEFINITION

In this section, we first introduce the background knowledge
of FM-fingerprint-based indoor localization, and then we for-
mulate the localization problem mathematically.

A. FM Fingerprint Based Indoor Localization

Different from distance-based localization, the outputs of
fingerprint-based localization are usually discrete points rather
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Fig. 1. Ordered singular values of an FM fingerprint map.

than precise coordinates. These points are called reference
points, which are defined as follows:

Definition 1: A reference point p/ is a selected physical
reference position, where the fingerprints are to be collected
to form the fingerprint map. P = {p/ | j = 1,2,..., Np}
denotes all reference points, where Np is the total number of
selected reference points.

Fingerprint is another important concept, which describes
the FM radio signal feature on a reference point p/.
In DeFLoc, we use Received Signal Strength (RSS) to rep-
resent the fingerprint. RSS is a basic measurement in all
kinds of signals such as WiFi, Bluetooth, and so forth. It is a
logarithmic function of received signal power and calculated
by the following equation:

RSS = 10 - log(P), (1)

where P denotes the power of received signals on a point. Note
that RSS value is usually a negative value, and some devices
provide Received Signal Strength Indicator (RSSI) value that
is a transformation of RSS value.

FM radio usually covers frequencies from 78 MHz
to 110 MHz, and public FM radio stations scatter in this fre-
quency range. We divide this range into Ny frequency points
v, which is represented as V = {v; | v; = 1,2,..., Ny}.
By scanning these frequencies, one can obtain an RSS value
at each FM frequency. The vector of RSS values forms a
fingerprint at a certain position. We give the definitions of
fingerprint and fingerprint map as follows:

Definition 2: A fingerprint f(p) at position p is a column
vector of RSS values measured at preset frequencies, i.e.,
f(p) = (" (p),r*2(p), ..., r"™ (p))T, where r¥i(p) refers
to measured RSS value at frequency ov;.

Definition 3: A fingerprint map is a matrix X € RV?*Mv
that combines fingerprints at all reference points and is repre-
sented as X = (f(p'), f(p*), ..., F(p"*)T.

The first sub-figure in Fig. 2 shows a piece of FM fingerprint
collected by using a USRP N210 as the receiver. We totally
collected hundreds of samples, and calculated their variances
at each frequency, as shown in the second sub-figure in Fig. 2.
We observe that there are two RSS peaks in Fig. 2, which
indicate two FM radio channels at 89.8MHz and 91.3 MHz,
respectively. We define the station frequency as follows:

Definition 4: A station frequency v is a FM radio fre-
quency where a radio station transmits. All station frequencies
are denoted as V5 = {vjs. | j=1,2,..., N\g}. Note that we

have VS c V.
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Fig. 2. A piece of collected FM fingerprint ranging from 81.3 MHz to

91.7 MHz, which contains two FM radio station frequencies.

Due to the multi-path effect, we can also observe a large
variance peak appearing beside the station frequency. Frequen-
cies between two station frequencies carry stable noise with
low variance. We call these frequencies noise frequencies,
which are defined as follows:

Definition 5: A noise frequency o” is far from station
frequency and carries stable background noise. All noise
frequencies are denoted as VN = {vj.v | j=1,2,..., N{}’}.
Similarly, we have YN .

In general, a fingerprint-based indoor localization scheme
contains two phases: offline phase and online phase. In the
offline phase, fingerprints at all reference points P are col-
lected to form the fingerprint map X. In the online phase,
a vehicle measures current position’s fingerprint f , matches its
fingerprint with the fingerprint map &', and outputs an inferred
vehicle position p according to the matching result. We can see
that these two phases play different roles in the localization
process. The offline phase provides the fingerprint map that
serves as a navigator for the online phase. Since the collection
of fingerprint map is workload-heavy and those fingerprints do
not change very frequently, the fingerprint map only needs to
update periodically. Thus, the collection of the fingerprint map
belongs to the offline phase. Given the collected fingerprint
map, vehicles can easily localize their positions in real-time by
comparing measured fingerprints, which belongs to the online
phase.

B. Problem Definition

Now we formulate the indoor localization problems to be
solved and claim the goals to achieve. Since a configuration
process is needed in advance, the localization can be divided
into offline phase and online phase.

Offline Phase: We first select a set of reference points
‘P that contains Np reference points in an indoor parking
area. Let X' denote the ground truth fingerprint map of P.
To reduce the fingerprint sampling workload, we utilize the
sampling function S to sample an incomplete fingerprint map
Y, ie,Y = S(X,a), where a € (0, 1) denotes the missing
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Fig. 3. The framework design and workflow of DeFLoc.

rate of sampling. It is evident that a larger a reduces more
sampling workload but makes it more difficult to reconstruct
the fingerprint map in the meantime. The sampling function
S is actually a linear function of X and can be defined as
follows:

SX)y=xXoM,;

mask>

)

where © denotes the Hadamard product (known as element-
wise production), M7 . is the preset sampling mask matrix
that contains only O and 1. To reconstruct the fingerprint
map, we define the recovery function R to obtain a recovered
fingerprint map X’ by operating X' = R(}).

Online Phase: The online localization is based on the
reconstructed fingerprint map X’. For a fingerprint f(p)
collected by the vehicle at position p, we have a localization
function L that matches f(p) with the reconstructed finger-
print map X”, and determines the predicted position p, ie.,
p =L, f(p)).

We can observe that the localization accuracy relies heavily
on the quality of the reconstructed fingerprint map. Therefore,
it is critical to ensure the reconstruction performance of R.
That is to say, The goal of the map reconstruction should be
minimizing the reconstruction error, i.e.,

min [|R(Y) ~ X%, A3)

where || - || denotes the Frobenius norm of a matrix. More-
over, to achieve accurate localization, it is critical to minimize
the localization error, i.e.,

mgn D(P, L(X/a f(p)))a

where D(-,-) denotes the physical distance between two
positions.

“)

IV. DEEP LEARNING AND FM FINGERPRINT MAP BASED
INDOOR VEHICLE LOCALIZATION

The workflow of DeFLoc is illustrated in Fig. 3. In the
offline phase, we periodically sample FM fingerprints with a
certain missing rate in indoor parking areas. Then the collected
incomplete fingerprint map is recovered by our proposed
dedicated CNN model to get the reconstructed fingerprint
map. In the online phase, a sequence of on-vehicle collected
fingerprints is fed to our continuous localization algorithm

to output the predicted positions. In the following sections,
we will describe the designs of the uniform sampling method,
the reconstruction CNN model, and the continuous localization
algorithm in detail, respectively.

A. Uniform Sampling

Although fingerprint map collection is usually done by
robots, collecting the whole fingerprint map is still time-
consuming. To reduce the workload of fingerprint collection
in the offline phase, we avoid collecting the whole fingerprint
map X on P. Instead, we partially sample from &, and
then the fingerprint map is reconstructed according to the
propagation model.

However, FM propagation model is hard to build precisely
in an indoor parking environment, since it contains both
outdoor and indoor propagation signals and suffers the multi-
path effect. Moreover, previous works are usually implemented
on high-end receiver devices, such as USRP. These devices
have very large bandwidths that can cover the whole FM
frequency range, which does not work for on-vehicle low-end
devices. Most low-end FM devices have very small bandwidths
so that RSS at each frequency can be only measured one by
one.

Therefore, we sample the FM fingerprints using partial uni-
form sampling in a frequency-wise way. For each position p,
we randomly mark a subset VP» C V as missing frequencies

I\lf;)lpl = o. Then
we only measure RSS values at frequencies set V \ V27 and
fill the rest RSS values with zero.

It is worth mentioning that V7 is related to position p. That
means FM fingerprints at different positions have different
VPr | as shown in Fig. 3, where white blocks represent missing
RSS values. Otherwise, if all fingerprints share the same V7,

reconstructing the fingerprint map can be less feasible.

according to the preset missing rate «, i.e.,

B. Fingerprint Reconstruction CNN

To reconstruct the fingerprint map, we leverage a convo-
lutional neural network as the map filler. For FM signal,
the distribution of RSS values at station frequency and noise
frequency can be distinct. Therefore, we design smooth layers
that train parameters respectively for station frequency and
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Fig. 4. An example of 3-filter Conv2D layer.

noise frequency, to better model the features of the fingerprint
map.

1) Convolutional Layer: To reconstruct the fingerprint map
from an incomplete one, we design a dedicated CNN as the
filler. Deep neural network has a great ability to fit a function
through learning. Given that the fingerprint map is stored in a
matrix form, we adopt 2-Dimensional Convolutional (Conv2D)
layer in the proposed deep neural network to fulfill the task
of fingerprint map reconstruction.

A Conv2D layer contains several filters. It is actually a
linear function that takes the input tensor and maps it to the
output tensor by calculating the convolution between a filter
and a subsection of the input tensor. Note that here tensors are
3-dimensional and the shape of tensors can be represented by
a tuple (width, height, depth).

Fig. 4 shows an example of how an output tensor is obtained
in a Conv2D layer. The input tensor is firstly filled with empty
padding according to the size of filters so that the output
tensor shares the same width and height as the input tensor.
After filling the padding, every combination of a filter-shape
subsection Til in the input tensor and a filter F; generates a
corresponding target value Tl(; in the output tensor. The target
value is computed as follows:

TG =D (T 0 Fy), 5)

where Y (-) means the sum of all elements in the tensor. Note
that the Hadamard product is calculated between two tensors
that share the same shape, which means the input tensor and
the filters share the same depth. As illustrated in Fig. 4, the
depths of both input tensor and filters are 1, and the depth
of output tensor is equal to the number of filters. It is worth
mentioning that the size of the filter should be relatively small
in our network since two reference points that are farther apart
have less correlation.

With Conv2D layers, we construct a deep convolutional
neural network as shown in Fig. 5. The proposed network
has a symmetric structure that contains only convolutional
layers and smooth layers (smooth layer is introduced in
Section IV-B.2). As mentioned before, the thickness of the
Conv2D layer represents the number of filters it contains.
In our design, we set the layer Convl, Conv2, Conv3
in Fig. 5 with 16,32, 64 filters, respectively. To introduce
non-linearity into deep neural network, we adopt Rectied
Linear Units (ReLU) as the activation function, which is
defined as g(x) = max(0, x).

A single Conv2D layer works like KNN since both of them
consider its several neighbors. But it makes sense when the
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Fig. 5. Structure of proposed CNN model for fingerprint map reconstruction.

network grows deep. A deep convolutional neural network has
a strong learning ability and can find a natural representation
of the fingerprint map via training. Therefore, it is beneficial
for improving reconstruction precision.

2) Smooth Layer: To accelerate training of the network and
improve the network performance in the meantime, we add
smooth layers in the network (shown as the blue layers
in Fig. 5), which utilize the features of FM fingerprints.
As defined in Def. 4 and Def. 5, RSS values at noise
frequencies usually have less variance and hence are more
stable, while RSS values at station frequencies have larger
mean and variance. Therefore, we design the smooth layers
that consider both kinds of frequencies and smooth their RSS
values with trainable weights.

We set weights w3 and w” for station frequency and noise
frequency, respectively. Each weight has the same shape of
input tensor and only works on its corresponding frequencies.
The smooth layer can be regarded as the following function:

s =wSoT/L,V5, 1+ o T, VN1, (6)

where T'[:, VS, ] and T'[:, VN, :] are the lateral slices of
the input tensor that are corresponding to VS and VNV ,
respectively. These two parameters will be updated during the
training process of the network.

The smooth layer contains trainable variables directed on
both station frequencies VS and noise frequencies VN RSS
values of these frequencies have less variance over different
positions so that they can be further modeled by smooth layers.
We remain RSS values on frequencies except these two types
reconstructed by the Conv2D layer since Conv2D layer has a
stronger representation ability.

3) Network Training: The deep neural network is trained
using the Back-Propagation (BP) algorithm. The error loss
function is employed to measure the difference between the
ground truth and the output of the network, which is defined
as

JO) = |1X - X||%
= > > (XL, j1- XL DA (7
i

where X is the recovered fingerprint map output by the net-
work, and & is the ground truth fingerprint map. 6 represents
trainable parameters in the CNN model. By minimizing the
value of loss function J(#) with BP algorithm, the weights in
Conv2D layers and smooth layers are updated with Adaptive
Moment Estimation (Adam) optimizer until the value of J(0)
converges.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 25,2022 at 07:27:22 UTC from IEEE Xplore. Restrictions apply.



LEI et al.: DeFLoc: DEEP LEARNING ASSISTED INDOOR VEHICLE LOCALIZATION ATOP FM FINGERPRINT MAP

Reference

§S)intst

* %

Fig. 6. Composition of candidate positions PC.

C. Continuous Localization Algorithm

To achieve accurate localization, we design the continuous
localization algorithm to determine the position of vehicles.
We begin with analyzing the movement of vehicles in an
indoor parking area during its AVP process, i.e., a vehicle
firstly enters the parking area from one entrance, and drives
itself to the allocated parking slot following the roads at a
low speed. The movement status of a vehicle at one moment
usually can be categorized as three types: Moving forward
(including turns), Staying or Moving backward. And the third
status almost only appears when the vehicle is driving into
a parking slot, which is already realized in AVP level 2.
Therefore, we only consider the first two movement status.

To avoid matching an online fingerprint with the whole
fingerprint map, we set a candidate position set P¢ and
corresponding fingerprint set 7€ for the vehicle to determine
the possible positions. PC is initially set as P, which denotes
the collection of reference points located near entrances. The
online fingerprint is then matched with FC rather than the
whole fingerprint map. We simply adopt cosine similarity for
fingerprint matching, which is calculated as follows:

(x, y)
xll - 1yl

where (-, -) denotes the inner product of two vectors, and || - ||
denotes the L2 norm of a vector. It is evident that the two
most similar fingerprints have the largest cosine similarity.
Suppose the first localization output is p, we then update
PC and FC according to p. We use 5(p, PV) as the new P,
where PV denotes the set of history localization outputs. Fig. 6
shows the composition of updated P¢. J(p, PV) considers
those reference points close to p and the potential moving
directions of the vehicle coming from the position PV. Ref-
erence points are usually selected in grid, therefore, p has at
most 4 directions. Given that vehicles seldom move backward
during the process of looking for an available parking slot,
reference points on the opposite moving direction of the
vehicle will be unlikely the next point where the vehicle will
appear. Suppose Pllf denotes a set of reference points that are

cosine(x,y) =

®)

19801

Fig. 7. Environment setup: data collection devices and an indoor parking
area. Green stars represent reference points.

on the opposite direction of PV from p (backward direction),
and P] = P\PJ, (forward direction). We formulate 6(p, P")
as

3(p,P)Y={p' | D(p,p') <yd,p € P}}
U{p' | D(p,p') <d.p €Py}. (9

where D(-,-) denotes the distance between two reference
points, d is the neighbor radius and y € (0, 1) is the opposite
direction elimination rate. A larger y can tolerate a larger error
of the output p. A larger d is also more error tolerant, since
the scale of candidate positions grows larger. However, too
large d can make it more complex for fingerprint matching,
and thus increases the probability of wrong matches.

In algorithm 1 we show the complete algorithm. Note
that each iteration only requires current f° and previous
information, so that the result of the current iteration can be
output immediately (seen as yield).

V. EVALUATION AND ANALYSIS
A. Experiment Setting

1) Data Collection Device: In our experiment, we used
a TEA 5767 FM module as the FM receiving device.
TEA 5767 FM module is a commonly used FM receiver and
similar to on-vehicle FM devices that have limited bandwidth
and low sensitivity. A TEA 5767 board can support frequen-
cies ranging from 76 MHz to 108 MHz. It provides a 4-bit
RSSI value (i.e., 0-15) to measure the received signal strength.

The setting of data collection is shown in Fig. 7. The
FM module is connected to a Raspberry Pi board using
I’C communication. The Raspberry Pi is programmed to
control the FM module, including setting the FM module
to a new frequency and reading the RSSI value periodically.
The Raspberry Pi is controlled by a PC using SSH protocol.
Collected data are temporarily stored in the Raspberry Pi
and further uploaded to the PC. To get more accurate RSSI
values, we collect RSSI values at a certain frequency 4 times
and calculate their average values as the final recorded RSSI
values.

2) Field Setup and Data Collection: We chose an indoor
underground parking area as our experiment field. The parking
area contains three floors, numbered B1, B2, and B3. We chose
B3, the deepest floor, to collect data. Fig. 7 shows the B3 floor
where we collected data.

The plane structure of our chosen parking area is shown
in Fig. 8. The parking area contains many parking blocks
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Algorithm 1 Continuous Localization L(F")

Input: A sequence of fingerprints collected by vehicle

]:V
Output: A sequence of predicted position PV
// Initiate P¢, FC¢ from entrance
reference points.
1 PC « PE
2 FC <~ {f(p) | pe P}
3PV ()
afor fV in FV do
// Match f’ with FV using cosine
similarity.

r<{}
for (p¢, f¢) in (P€, F€) do

s < cosine(f’, )

1 —1U{(p, )}
end
// Find and output matched reference

point.

10 | (p,s) <« msaxt

o e NN & w»n

11 | yield p

2| PV <PYU{p}

// Update P€, FC€ from current
predicted position p and history
track PV.

13 | PC < 8(p,PY)

u | FC —{f(p)| pe P}

15 end

16 return PV

[HERNANARE L AR AN NN
Block " Block
________________ * R
Viain Road LA A0 0. 0.0 0 5000 A,
Parking : Parking
Block Block
________________ . Som s e s =
NANRY AN NN ATAN AW
. w .
Parking & Parking
i i Block & Block

Fig. 8. Plane structure of the indoor parking area.

which are separated by main roads and branch roads. Since
our localization is to help vehicles navigate themselves in the
parking area, we select all reference points on roads instead of
parking blocks, as green stars illustrated in Fig. 8. According
to the recommended setting in RadioLoc [8], we set the
distance of two adjacent reference points as 4.8 meters, which
is close to the length of a car and exactly equal to the width
of two parking slots.

In our experiment field, the frequencies of FM radio stations
scatter from 87 MHz to 107 MHz. Therefore, we chose this
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TABLE I
INFORMATION ABOUT COLLECTED FINGERPRINTS
# subarea | number of fingerprints
1 450
2 270
3 270
4 270
Total 1260
TABLE II
PARAMETERS OF IMPLEMENTED NEURAL NETWORK
# layer output shape | filters | filter size
Input (45, 201, 1) 16 2,1
Convl (45, 201, 16) 16 2,1
Conv2 (45, 201, 32) 16 2,2)
Conv3 (45, 201, 64) 16 (1, 4)
Conv4 (45, 201, 32) 16 2,2)
Conv5 (45, 201, 16) 16 2,1
Smoothl (45, 201, 36) - -
Smooth2 | (45, 201, 16) - -
Output (45, 201, 1) - -

range to collect FM fingerprints. We set 100 kHz as the
interval length and divided the range 87 MHz to 107 MHz
into 201 frequencies, i.e., {87.0,87.1,...106.9, 107.0} MHz.
Therefore, the length of an FM fingerprint is 201. We totally
chose 4 subareas in the parking area. In each subarea,
we selected 45 reference points to collect fingerprints. Each
subarea covers about 3000 m? and contains more than
150 parking slots. Then a fingerprint map in our experiment
is a 45 x 201 matrix. Note that we collected complete fin-
gerprint maps because we need the ground truth to evaluate
the performance of our system. Information about collected
fingerprints is shown in Tab. I. We further conducted 5-fold
cross-validation [40] where we divided the dataset into the
training set, validation set, and test set with the proportion of
80%, 10%, and 10% respectively.

3) System Implementation: We built our system on a PC
with AMD Ryzen 3600X CPU, 16G RAM, and Nvidia
RTX 2060 GPU. We implemented the proposed CNN net-
work using Keras, which is a deep learning library taking
Tensorflow as the backend. According to our collected data,
we determined the parameters of our neural network, as shown
in Tab. IL.

We totally set 6 data missing rates, from 10% to 60%,
to evaluate our fingerprint reconstruction algorithm exten-
sively. Since we collected complete fingerprints in the data
collection phase, we uniformly removed a part of values in
collected fingerprints as the inputs of the CNN network. And
we used the corresponding complete ones as the ground truth
to train the network. Note that we trained a network for each
missing rate using mixed data from 4 subareas. By monitoring
the loss change on the validation set, the early stop mechanism
stops the training in time to avoid model overfitting. The
learning rate was set as 3 x 107> with a decay of 107>,

For testing the online localization accuracy, we simulate
totally 320 vehicle tracks in 4 subareas based on the ground
truth fingerprints. Each track starts from one of the entrances.
For each movement, the vehicle moves forward with an
85% possibility or stays with a 15% possibility. To simulate
the interference in the online phase, we also add Gaussian
noise to our generated fingerprint sequences of each track.
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Fig. 10. CDF of mean absolute error of each method under different data missing rates.

The simulated noise is 1.5x larger than the noise in the col-
lected dataset. Our continuous localization algorithm was then
evaluated on these simulated tracks using the reconstructed
fingerprint map obtained in the previous stage.

4) Metrics: We measure the performance of fingerprint map
reconstruction by Mean Squared Error (MSE), i.e.,

Np Ny
! ] Ore s1n2
WZ”ZW,J]—XU,JD, (10)

where X is the ground truth fingerprint map and X is the
output of reconstruction methods. In this experiment, we have

p =45 and Ny = 201.

We use the accuracy and error rate to measure the perfor-
mance of localization methods. For the i-th track, we define
the localization accuracy as

T P;
B I EB (11
TP, + FP;
where T P; and FP; are the numbers of true positive and
false-positive matching, respectively. Since there are multiple
simulated tracks in the experiment, we calculate the average
accuracy as the final accuracy of the methods.

acci =

Suppose the length of the i-th track is /;, and the j-th output
in the i-th track is denoted as p; ;. Its ground truth is denoted
as p;, j. The localization error of the i-th track is defined as

e = ZD(p,,,p,n (12)
15
im
Similarly, we take the mean of error values of all tracks as the
final error value, called Average Localization Error (ALE).

B. Performance of Fingerprint Reconstruction CNN

1) Reconstruction Precision: We evaluated the performance
of our fingerprint reconstruction network under 6 missing rates
and 4 subareas. Since we firstly propose to reconstruct FM
fingerprint map using deep learning method, few methods can
be directly applied in this scenario. Therefore, we apply some
classical general matrix completion methods including KNN,
Iterative SVD (I-SVD), SoftImpute, and Similar Weighted
Averaging (SWA) supported by the open-source library [41]
on our collected dataset. To validate the effectiveness of our
proposed smooth layer, we also trained networks without
smooth layers.
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Fig. 11. Training process when data missing rate = 0.5.

Fig. 9 shows the performance of each reconstruction method
measured by MSE. When the missing rate is less than 20%,
MSE of each method rises with the increasing data missing
rate. For instance, the error of our proposed CNN with smooth
layers is no more than 0.021, when the missing rate is 10%.
And the MSE increases to 0.109 when the missing rate comes
to 60%. Besides, when the missing rate is less than 20%, all
methods have acceptable reconstruction accuracy. But when
the missing rate is larger than 20%, our proposed model has
an obvious advantage over other conventional methods. Even
under a missing rate of 60%, our reconstruction error is over
40% less than SoftImpute which achieves the best performance
among these conventional methods. In addition, in most cases,
CNN with smooth layers outperform that without smooth
layers slightly, which shows that smooth layer can further
improve the reconstruction performance.

We also calculate the Cumulative Distribution Func-
tion (CDF) of mean absolute error of each reconstruction
method, which is illustrated in Fig. 10. When the missing
rate is less than 30%, all methods show good CDF curves
except I-SVD. And when the missing rate is larger than 30%,
the CDF curve of our proposed network is always over other
curves, which means our proposed network outperforms other
methods. The advantage is more evident under a larger missing
rate. Even with a missing rate of 50% or 60%, our proposed
CNN with smooth layer can keep the mean absolute error
smaller than 0.5 with a 90% possibility.

These results show that our proposed fingerprint reconstruc-
tion model has a strong learning ability and can be qualified
for FM fingerprint map reconstruction.

2) Performance of Smooth Layer: In the experiment,
we trained our proposed CNN model on an Nvidia
RTX 2060 GPU. We set the maximal training epochs as
3000 for each network. With the early stop mechanism, it takes
much fewer epochs than maximal epochs to finish training.

Fig. 11 shows the training process when the missing rate is
50%. The figure shows that the loss of both networks (w/ or
w/o smooth layers) converges with training epochs increasing.
Nevertheless, the network with smooth layers shows better
performance than that without smooth layers both on training
set and validation set. Moreover, during the training process,
we take the change of loss on validation set as the indicator of
convergence. Therefore, we observe that network with smooth
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Fig. 12. Localization accuracy and ALE under different data missing rates.

layers converges during 900 to 1000 epochs, while network
without smooth layers converges during 1100 to 1200 epochs.
Since smooth layers learn the features of those low-variance
frequencies specifically, they can make the training process
converges faster. In conclusion, our proposed CNN model with
smooth layers addresses the challenges of low precision of
fingerprint map reconstruction and signal distortions.

Our proposed network is also efficient both in training
and predicting. It takes less than 40 milliseconds to train the
network for one epoch. Therefore, the training process can
be finished within minutes. And in the predicting phase, one
prediction can be finished within 100 milliseconds. In addition,
the size of our model is less than 6 MB, which is lightweight
enough to be deployed on edge servers or even terminal
devices.

C. Performance of Continuous Localization Algorithm

In our simulation, we mainly tested the accuracy and ALE
of our proposed continuous localization algorithm. By using
a dynamic local candidate fingerprint set instead of a global
one, our algorithm reduces the workload for matching and
meanwhile achieves high accuracy. The accuracy and ALE
under different missing rates are shown in Fig. 12. The
missing rate does affect both the accuracy and ALE of the
localization. Especially when the missing rate is larger than
40%, the performance of localization decreases sharply. This is
reasonable since precise localization relies on the high quality
of the fingerprint map. With a larger error on fingerprint
map reconstruction, the performance of localization can be
affected apparently. Even with the reconstructed fingerprint
map recovered from the incomplete one, our algorithm still
achieves a high accuracy (over 90%) and low ALE (less
than 1.5 meters). Therefore, we conclude DeFLoc can realize
accurate vehicle localization in indoor parking areas.

VI. CONCLUSION

In this work, we firstly investigate the reconstruction of FM
fingerprint map in an indoor parking environment. By ana-
lyzing the feature of FM fingerprints, we propose a deep
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learning model to do fingerprint map reconstruction with high
accuracy. We design smooth layers for both station frequencies
and noise frequencies with trainable variables to accelerate

the

convergence of the network and meanwhile improve the

reconstruction performance slightly. We also propose a contin-
uous localization algorithm for precise localization prediction.
Field tests in the real indoor parking area demonstrate that
our proposed reconstruction model outperforms conventional
matrix completion methods, and helps to achieve accurate
localization. In our future work, we consider combining FM
and other signal sources, such as WiFi, to further improve the
accuracy of indoor vehicle localization.
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