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The Internet of Things (IoT) is impacting the world’s connectivity landscape. More and more IoT devices are connected,

bringing many beneits to our daily lives. However, the inlux of IoT devices poses non-trivial challenges for the existing

cloud-based computing paradigm. In the cloud-based architecture, a large amount of IoT data is transferred to the cloud for

data management, analysis, and decision making. It could not only cause a heavy workload on the cloud but also result in

unacceptable network latency, ultimately undermining the beneits of cloud-based computing. To address these challenges,

researchers are looking for new computing models for the IoT. Edge computing, a new decentralized computing model, is

valued by more and more researchers in academia and industry. The main idea of edge computing is placing data processing

in near-edge devices instead of remote cloud servers. It is promising to build more scalable, low-latency IoT systems. Many

studies have been proposed on edge computing and IoT, but a comprehensive survey of this crossover area is still lacking.

In this survey, we irstly introduce the impact of edge computing on the development of IoT and point out why edge com-

puting is more suitable for IoT than other computing paradigms. Then, we analyze the necessity of systematical investigation

on the edge-computing-driven IoT (ECDriven-IoT) and summarize new challenges occurred in ECDriven-IoT. We categorize

recent advances from bottom to top, covering six aspects of ECDriven-IoT. Finally, we conclude lessons learned and propose

some challenging and worthwhile research directions.

CCS Concepts: · Computer systems organization→ Distributed architectures; Real-time operating systems; · Networks

→ Network protocols; · Security and privacy; · Computing methodologies→ Distributed computing methodologies;

Additional Key Words and Phrases: Edge computing, Internet of things

1 INTRODUCTION

The Internet of Things (IoT) is a revolutionary approach that interlinks uniquely addressable physical and virtual

devices through diferent communication protocols. According to the statistics, the number of wireless-connected

IoT devices will reach 50 billion by 2025 [51]. Potential devices include smartphones, bio-nano things, body

sensors, smart tags, wearable devices, embedded objects, and traditional electronic gadgets [6]. These devices

usually have a variety of sensors inside for collecting environmental data, which are fundamental elements of

data-driven intelligence. Thus, massive deployed devices lead to an explosive data increase in the meantime. The

∗Linghe Kong is the corresponding author of this research.

Authors’ addresses: Linghe Kong, linghe.kong@sjtu.edu.cn; Jinlin Tan, jinlintan@sjtu.edu.cn; Junqin Huang, junqin.huang@sjtu.edu.cn;

Guihai Chen, gchen@cs.sjtu.edu.cn; Shuaitian Wang, wang-st@sjtu.edu.cn, Shanghai Jiao Tong University, China; Xi Jin, jinxi@sia.cn; Peng

Zeng, zp@sia.cn, Shenyang Institute of Automation, Chinese Academy of Sciences, China; Muhammad K. Khan, mkhurram@ksu.edu.sa,

King Saud University, Kingdom Of Saudi Arabia; Sajal K. Das, sdas@mst.edu, Missouri University of Science and Technology, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2022 Association for Computing Machinery.

0360-0300/2022/8-ART $15.00

https://doi.org/10.1145/3555308

ACM Comput. Surv.

HTTPS://ORCID.ORG/0000-0001-9266-3044
HTTPS://ORCID.ORG/0000-0002-1400-5502
HTTPS://ORCID.ORG/0000-0002-1306-9088
HTTPS://ORCID.ORG/0000-0002-6934-1685
HTTPS://ORCID.ORG/0000-0002-3670-518X
HTTPS://ORCID.ORG/0000-0003-3570-7463
HTTPS://ORCID.ORG/0000-0001-7863-3260
HTTPS://ORCID.ORG/0000-0001-6636-0533
HTTPS://ORCID.ORG/0000-0002-9471-0868
https://orcid.org/0000-0001-9266-3044
https://orcid.org/0000-0002-1400-5502
https://orcid.org/0000-0002-1306-9088
https://orcid.org/0000-0002-6934-1685
https://orcid.org/0000-0002-3670-518X
https://orcid.org/0000-0003-3570-7463
https://orcid.org/0000-0001-7863-3260
https://orcid.org/0000-0001-7863-3260
https://orcid.org/0000-0001-6636-0533
https://orcid.org/0000-0002-9471-0868
https://doi.org/10.1145/3555308


2 • Kong et al.

collected data need to be processed and analyzed before providing useful results for users. But the computation

ability of lightweight IoT devices is quite limited. One solution to this problem is cloud computing. In the cloud-

based paradigm, IoT data is irst transferred to the cloud server for processing, and then computing results will be

sent back to devices. However, data transmission rate and network bandwidth could become bottlenecks to the

further development of massive IoT [162]. Moreover, as most IoT devices will generate personal and sensitive data,

it is inappropriate to send all IoT data to remote cloud servers, which will cause security and privacy concerns.

Edge computing is a new computing paradigm that directs computational data, applications, and services

away from cloud servers to the network edge. Content providers and application developers can use edge

computing to ofer users services closer to them in geography, which can accelerate the response speed of

services. Edge computing is characterized as high bandwidth, ultra-low latency, and real-time access to network

information [86, 150]. And IoT applications usually require real-time response, privacy preservation, and massive

data transmission. Compared with cloud computing, edge computing has the potential to match large-scale IoT

applications’ requirements.

The common goal of IoT and edge computing is to perform seamless computing anytime and anywhere, but

they act in diferent roles in the system. IoT focuses on endpoint sensing, while edge computing focuses on

near-ield computation. Thus, it is promising for edge-computing-driven IoT (ECDriven-IoT) systems to make

these two technologies complement each other. Nowadays, IoT has been widely used in many complex scenarios,

such as smart homes, smart cities, smart grids, virtual reality (VR), augmented reality (AR), and autonomous

driving. ECDriven-IoT can beneit these IoT applications from three aspects: 1) Real-time response and high

quality of services (QoS). Edge computing can provide shorter network latency than cloud computing, as

edge servers lie closer to IoT devices in geography. This superiority can support high-demand real-time IoT

applications better. Owing to a majority of data processed in edge servers, the amount of data oloaded to the

cloud can be largely reduced. Thus, ECDriven-IoT can bring higher QoS for those real-time IoT applications. 2)

Low energy consumption. Most IoT nodes are power-limited devices, but synchronizing large amounts of

sensing data to the remote cloud wastes much power. With edge computing, IoT nodes only need to send data to

local edge servers, so the energy consumption of IoT nodes can be decreased to a lower level. Thus, ECDriven-IoT

can extend the lifetime of IoT nodes and reduce the maintenance overhead. 3) High scalability. One unavoidable

challenge in cloud-based IoT systems is the large-scale access requirements. The cloud server could be the system

bottleneck due to large amounts of concurrent connections from IoT nodes. In ECDriven-IoT, edge servers (e.g.,

base stations) provide moderate computing resources in a distributed manner, so ECDriven-IoT can provide good

scalability that satisies the requirements of large-scale IoT applications like smart cities or autonomous driving.

Therefore, we believe edge computing is indispensable for future IoT, and the study combining IoT and edge

computing has academic prospects.

Many surveys [57, 157] pointed out that recent advances related to IoT and edge computing have made many

eforts to satisfy these requirements. However, when combining edge computing and IoT, there are still several

new challenges regarding how to eiciently integrate these two technologies and bridge the diference between

them. We summarize three new challenges in ECDriven-IoT systems:

• Heterogeneity of edge computing and IoT. IoT devices are working everywhere and vary across diferent

scenarios. Thus, there are various hardware devices and communication protocols in IoT systems. For edge

computing, the deployment architecture of edge nodes also requires diferent solutions for diferent scenarios.

Thus, combining edge computing with IoT is faced with the challenge on how to unify the diversity of IoT and

edge computing and make them complement each other. To eiciently apply edge computing in heterogeneous

IoT systems, the cooperation architecture of ECDriven-IoT, hardware devices, and communication protocols

need to be explored and form industry standards.
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• Coordination between communication and computing. When combining edge computing with IoT, the

system is more complex than only IoT or edge computing-based ones. The communication between edge

servers and IoT devices will bring extra consumption to the whole system. Besides, edge servers and IoT devices

are limited in power and computing capacity. For example, if IoT devices oload all workload to edge servers,

it must pose a greater demand on communication cost and computing capacity of edge nodes. So, we should

explore how to allocate workload between edge servers and IoT devices to balance the cost of communication

and computation.

• Complicated security and privacy issues. How to guarantee systems’ security and privacy is always

a signiicant challenge in IoT and edge computing. However, these issues become more tricky due to the

heterogeneity and limited computing capability of ECDriven-IoT. IoT devices and edge servers are vulnerable

to various attacks. Once any of these points are compromised, the system will be in great danger. So, a

qualiied ECDriven-IoT system should fully consider possible security threats and countermeasures in diferent

application scenarios.

There have been numerous studies from IoT to edge computing, covering every aspect of the system. It is

necessary to reveal what research has been done in this area and explore what the future research direction is.

Many excellent surveys have focused on either IoT or edge computing. In the IoT aspect, a plethora of surveys

have referred to architecture [57, 157], communication [106, 124], IoT application [61, 159] as well as security and

privacy [10, 110]. As for edge computing combined with IoT, there have also been several surveys from diferent

perspectives as shown in Tab. 1. However, these surveys:

• covered a limited number of research areas, and the system architecture of ECDriven-IoT has not been discussed.

• revealed many challenges in edge computing or IoT, but those new challenges arising from combining edge

computing and IoT have not been explored.

ECDriven-IoT is a promising solution taking advantage of edge computing to build scalable and eicient IoT

systems. Both academia and industry need a survey to explain what happens when edge computing encounters IoT,

what beneits it brings in, and what new challenges it faces. Taking the requirements of a comprehensive survey

into account, we illustrate the architecture of ECDriven-IoT from the diferent levels in detail and summarize

recent research advances. The main contributions of this survey are summarized as follows:

• We reveal three new challenges in ECDriven-IoT, including the heterogeneity of IoT and edge computing,

coordination between communication and computation, and more tricky security and privacy issues.

• We categorize existing related studies from six aspects, i.e., system architecture, operating system, communica-

tion protocol, computing paradigm, application, and security and privacy. It gives a whole view of the current

advance of ECDriven-IoT and describes possible solutions for addressing these challenges in each aspect.

• Finally, we conclude key lessons learned after reviewing existing related work and give several insights into

future research challenges and directions in ECDriven-IoT.

The rest of this survey is organized as follows. Section 2 introduces the background of IoT and edge computing

and compares cloud computing with edge computing. The taxonomy of ECDriven-IoT is also proposed in this

section. According to the taxonomy, various hardware architectures of ECDriven-IoT are explored in Section 3.

In Section 4, we present operating systems adopted in IoT and edge computing, which play a signiicant role in

ECDriven-IoT. Communication protocols and computing technologies are discussed in Section 5 and Section 6,

respectively. Section 7 discusses security and privacy concerns when deploying ECDriven-IoT systems in practice.

ECDriven-IoT applications are introduced in Section 8. Section 9 provides lessons learned, open challenges along

with future research directions. Finally, we make a conclusion in Section 10.
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Table 1. Comparison of previous surveys in IoT and edge computing.

Survey IoT
Edge

Computing
IoT-Edge

Architecture
Architecture

Operating
System

Communication
Protocol

Computing Application Challenge

Raique et al. [142] ✧ ✧ ✧ ✧ ✧ ✧ ✧

J. Pan et al. [130] ✧ ✧ ✧ ✧ ✧

Abbas et al. [2] ✧ ✧ ✧ ✧

Porambage et al. [138] ✧ ✧ ✧ ✧ ✧

Javed et al. [80] ✧ ✧ ✧ ✧

Mouradian et al. [118] ✧ ✧ ✧ ✧

Salman et al. [152] ✧ ✧ ✧ ✧ ✧ ✧

Roman et al. [146] ✧ ✧ ✧

Baktir et al. [17] ✧ ✧ ✧ ✧

Y. Mao et al. [108] ✧ ✧ ✧ ✧

W. Yu et al. [194] ✧ ✧ ✧ ✧ ✧ ✧

Elazhary [49] ✧ ✧ ✧ ✧

Y. Ai et al. [7] ✧ ✧ ✧ ✧ ✧ ✧

Alwarafy et al. [12] ✧ ✧ ✧ ✧ ✧

Jararweh et al. [78] ✧ ✧ ✧ ✧ ✧

Our Survey ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧ ✧

2 BACKGROUND

In this section, we introduce the background of ECDriven-IoT, which has two main components: IoT and edge

computing. We also compare the diference between edge computing and cloud computing to explain why edge

computing is more suitable for IoT than cloud computing. And then, we give a taxonomy of ECDriven-IoT.

2.1 Internet of Things

In the IoT world, all objects that exist in reality can connect to the Internet and be accessed by users. Through a

speciic addressing scheme, IoT devices can cooperate to complete the designated work [15]. The main advantage

of IoT is its great impact on people’s daily life and potential user behavior [134]. On the one hand, for individual

users, the beneit is relected in areas such as electronic health, smart home, and life support. On the other hand,

for industry, IoT also plays an active role in automation, logistics, and intelligent transportation.

IoT has attracted immense attention from the industry and academia [6, 185]. More and more IoT applications

are focusing on achieving real-time responses, such as Virtual Reality (VR) [52], Augmented Reality (AR) [52],

and automatic driving. The very short latency is non-negotiable for these applications. In cloud computing,

due to geographical distance and network luctuation, the latency is too high to satisfy real-time requirements.

Besides, massive data deteriorate transmission performance. So, how to efectively allocate network bandwidth

and computing resources is a challenge [189]. In the IoT community, there are diferent data formats and

communication protocols, making IoT a vertically fragmented network system [190], which poses another

challenge to accomplish the desired low-latency performance. Furthermore, most IoT devices are power-limited,

and it is necessary to balance the power consumption to extend the lifetime of IoT devices.

Before IoT further deepens its impact on the world, many challenges are still worthy of attention and research.

One of the critical issues is how to achieve good interconnection and interoperability among IoT devices, guarantee

security demands, and provide a high level of intelligence. In addition, IoT devices usually lack of computing

power and energy capacity. Therefore, a new computational paradigm should target the resource eiciency in

addition to scalability issues. Edge computing as a new computing paradigm could provide such help for IoT.

2.2 Edge Computing

Edge computing essentially migrates partial computing jobs from remote cloud servers to local edge servers. It

performs data preprocessing and analysis near the data sources. Since edge servers are closer to data-generated

ACM Comput. Surv.
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Table 2. Comparison of edge computing and cloud computing.

Edge Computing Cloud Computing

Computing Location Edge devices, Distributed core net-

work

Centralized big data centers

Key Feature Close to data source, Edge and core

network

Centralization

Network Components Terminal device, edge device and

IoT gateways, Core network hard-

wares

All basic network components, Data

centers

Flexibility and Scalability High Low

Size Massive small nodes or according

to demands

Large

Deployment Temporary deployment or deploy-

ment with minimal planning

Complex deployment

Bandwidth Requirements A little and well balanced Long-haul network bandwidth re-

quirement

devices, they can have a quicker response than cloud servers. On the contrary, the advantage of cloud computing

is providing global scheduling capability and powerful computing resources. Similar to edge computing, fog

computing (FC) is a highly virtualized platform that ofers computing resources, storage, and control between

end-users and cloud servers, proposed by Cisco in 2012 [24]. In this survey, we refer to edge computing and FC

collectively as edge computing.

user gadgets mobiles, 

smartphones, music 

players, wearables, game 

controllers, etc

routers, switches, 

small/macro base 

stations, etc
datacenters, 

servers, 

database, etc

Fig. 1. Cloud, edge nodes and edge devices.

2.2.1 Cloud Computing. Cloud computing is another sig-

niicant change after large computer to client-server trans-

formation. Users can share software and hardware resources

in cloud computing [70]. The complex hardware structure

in cloud systems is transparent to users. So, users do not

need the expertise or direct control of cloud servers. There

have been many studies on the cloud and IoT, namely the

CloudIoT paradigm [26]. They have thoroughly investigated

the main attributes, characteristics, basic concepts, and open

issues of the CloudIoT paradigm. Tab. 2 shows the connec-

tion and diference between cloud computing and edge com-

puting. Edge computing is essentially an edge optimization

of cloud computing. Both of them are designed for han-

dling big data. However, the main diference is that data can

be distributed and processed on the closer edge servers in

edge computing. Thus, edge computing is more suitable for

real-time data processing and secure intelligent analysis.

Many studies attempt to optimize cloud computing to suit IoT scenarios [27, 44]. For example, Zhou et al.

proposed an architecture named CloudThings, which is an approach to combine cloud computing and IoT. This

architecture is a cloud-oriented IoT approach, helping IaaS, PaaS, and SaaS in developing and managing IoT

applications [199]. Pacheco et al. proposed a privacy-protected architecture for integrating cloud computing and

IoT. This architecture presents a scheme for protecting data generated by IoT devices without a secure transport

layer protocol [34]. However, the requirement of real-time response, massive data throughput, and low power still

ACM Comput. Surv.
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Edge Computing Driven IoT

Architecture Operating System Communication Protocol Computing Security and Privacy Application
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Fig. 2. Taxonomy of edge computing driven IoT.

constrain the application of cloud computing in IoT [144]. Thus, another solution is to propose a new computing

paradigm to solve these problems thoroughly.

2.2.2 Edge Computing. Edge computing conforms to the computing characteristics of mobile devices in IoT.

The core of this architecture is mobile edge computing (MEC). MEC is a new concept that integrates IT and

telecommunications, which adds functions such as computation, storage, and processing to the wireless network

side. It enables more and more mobile devices to quickly and easily access IoT, such as wearable smart devices.

Yaser et al. proposed a layered model consisting of a MEC server and a Cloudlets infrastructure [79]. This

architecture aims to increase the coverage of mobile user signals. And it allows users to complete the services they

request with minimal cost in terms of power and response latency. The main goal of the MEC solution is to export

some cloud functions to the mobile network edge, increasing available bandwidth and reducing latency. Unlike

the general architectural model, mobile hardware architecture is used more in communications, using multiple

software-deined network (SDN) controllers and virtualization to solve data processing in communications [153].

2.3 Taxonomy of ECDriven-IoT

The taxonomy of the ECDriven-IoT is shown in Fig. 2. We categorize relevant literature into six parts: hardware

architecture, operating system, communication protocol, computing layer, security and privacy mechanism, and

application. Existing research works are reviewed and grouped into the above six parts according to their research

focuses. These parts are discussed from bottom to up according to the layer in ECDriven-IoT systems. Although

these six parts belong to diferent research areas, they work together to form a complete ECDriven-IoT system.

The irst layer is the lowest-level hardware architecture layer, which focuses on IoT and edge computing

hardware. Research work includes general hardware architecture that typically contains terminal things and edge

network devices, mobile architecture suitable for mobile IoT scenarios, and scalable hierarchical architecture.

These three diferent architectures are categorized according to diferent deployment scenarios. The second
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layer, the operating system layer, mainly concludes several well-known IoT operating systems, such as Huawei

LiteOS and mbedOS. Those IoT operating systems are widely used in practical applications. And they are

generally lightweight, making them suitable for application to edge devices. The third layer is the study of

communication protocols, including both short-range ones and long-distance ones. An important area of research

in IoT is communication interaction between various devices. Especially in edge computing environments, more

communication takes place among devices. These devices often use diferent communication protocols and require

cross-protocol communication. Short-range communication protocols include famous Wi-Fi, Bluetooth, ZigBee,

and 6LoPWAN [162]. Long distance communication protocols include NB-IoT, LoRaWAN, and 5G. The fourth layer

is the computing layer, including computation oloading, IoT distributed computing, caching, software-deined

network (SDN), and network function virtualization (NFV). These new computational studies are currently not

given suicient attention, but they all have large development prospects and can optimize edge computing in

the IoT. The ifth layer is the security and privacy layer. It is necessary to consider security and privacy factors

when designing secure ECDriven-IoT systems. We analyze possible threats and existing countermeasures in

ECDriven-IoT. The inal layer is the application layer. We introduce several popular ECDriven-IoT applications,

including urban smart living, industrial applications, and optimization of the entire system.

3 ARCHITECTURE OF EDGE COMPUTING DRIVEN IOT

Fig. 3. Edge computing driven IoT model architecture.

As a complement to cloud computing, the IoT system

will become more complicated when meeting edge

computing. Since the number of edge nodes is large

and edge nodes distribute everywhere in geography,

one research point is how to manage and maintain

the ECDriven-IoT architecture. Fig. 3 shows a typical

ECDriven-IoT model architecture. The architecture of

the ECDriven-IoT needs to: 1)Manage devices. There is

a variety of IoT devices, and the number of IoT devices

is relatively large. Thus, they should be managed ef-

iciently to satisfy network bandwidth and power con-

sumption requirements. 2) Allocate resources. Edge

computing nodes lie near IoT devices, which can sig-

niicantly reduce communication latency. However,

the processing capabilities of edge nodes are limited.

The latency will be very high if application tasks are

waiting for the node. Thus, the architecture should

eiciently allocate computing resources to IoT devices.

3) Discover services. For edge nodes, they need to

discover services and allocate computing and storage

resources. Thus, how to eiciently discover services at

a low cost is another problem that needs to consider

in architecture. 4) Schedule power. IoT nodes are often

power-limited, so the architecture should be energy eicient to reduce power consumption.

3.1 General Hardware Architecture

Unlike cloud computing, edge computing complements and extends cloud computing to edges and endpoints.

Edge computing beneits from edge devices’ proximity to sensors while leveraging the on-demand scalability of

ACM Comput. Surv.
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cloud resources [42]. The distributed infrastructure of the ECDriven-IoT contains heterogeneous resources and

manages the architecture in a distributed manner. There are various participants in this distributed architecture,

including data centers, network cores, network edges, and endpoints. Thus, the architecture should be properly

designed. Fig. 4 shows a typical three-layer architecture of the ECDriven-IoT.

Things Layer

Edge Computing 

Layer

Cloud Computing 

Layer

Fig. 4. The three-layers architecture of

ECDriven-IoT.

IoT brings not only new entry points for big data analytics but also

distributed data sources at the network edge. Bonomi et al. introduced

a general hardware architecture that meets the needs of most IoT sce-

narios [23]. The general hardware architecture is characterized by a

low-cost coniguration that is easy to maintain and meets the needs of

IoT architecture in general, resulting in signiicant beneits. Dautov et

al. introduced a distributed hierarchical data fusion architecture for IoT

networks, consisting of edge devices, a network, communications units,

and cloud platforms together [43]. Diferent data sources are combined

at each level of the IoT hierarchy to produce timely and accurate results

by utilizing the computational capabilities of intermediate nodes.

EdgeX Foundry is another typical ECDriven-IoT architecture

model [47], which creates an open-source framework for IoT edge

computing. The framework is completely independent of hardware

and operating systems, supports a plug-and-play component ecosystem, uniies the market, and accelerates

the deployment of IoT solutions. Also, it addresses critical interoperability challenges for edge nodes and data

normalization in a distributed IoT edge architecture [56].

Edge computing nodes deployed in various environments are heterogeneous, while general architecture can

implement cross-platform management of heterogeneous resources. In the architecture, how to eiciently manage

fog/edge computing infrastructure, allocate available resources to IoT devices, and schedule fog/edge computing

resources is of signiicant importance [100]. Li et al. proposed an architecture called ECIoT and studied the

management of radio resources and computing resources in ECIoT [98]. ECIoT focuses on resource allocation

and performance control. To improve the performance of ECIoT, they use the Lyapunov stochastic optimization

method to maximize system eiciency. Kitagami et al. proposed a multi-agent-based lexible IoT edge computing

architecture to balance global optimization by a cloud and local optimization by edges for optimizing the role of

cloud servers and edge servers dynamically [88]. In [99], a multi-layer resource allocation scheme was proposed,

and it can adapt to the characteristics of resource-constrained nodes at edges.

3.2 Sotware Defined Hardware Architecture

With the increasing demands of users and broader network access, IoT applications, network developers, service

providers, and network carriers have to provide up-to-date services to users. In the same way, communication

networks are expanding exponentially, leading to the whole system consisting of many subnets. These subnets

have diferent communication and routing protocols. Integrating these heterogeneous subnets into a uniied

communications platform is a critical technical challenge, especially in a dynamic environment. For the practical

envisioning of edge computing in IoT, there is a need for a simpliied architecture that hides all the complexities

of communication and provides a simple implementation.

According to the deinition, SDN refers to a network architecture where the forwarding state in the data

plane is managed by a remotely controlled plane decoupled from the former [89]. On the one hand, SDN allows

a clear separation of concerns between service in the control plane and data plane, thus making the network

architecture more easily handled. On the other hand, SDN mechanisms aim to balance the degree of centralized

control/coordination through an explicit SDN controller and decentralized operations through low-based routing
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and rescheduling within network components. It is necessary to reduce collection overhead and guarantee data

efectiveness in the ECDriven-IoT system, which makes SDN very suitable for edge computing and IoT.

Salman et al. introduced a hardware architecture that integrates new technologies such as an SDN and virtual

network functions (VNF) [153]. This architecture is used to implement and lexibly manage distributed edge

networks, improve network scalability, and reduce costs. For example, for a typical factory, services and workloads

are more IT-centric (e.g., factory data centers), and as they move down, they become OT-centric (e.g., factory

machines). Software-deined resource allocation and management is gaining momentum in the edge computing

paradigm as it can enable plant operators to better adapt to future needs. From a network perspective, this

translates into an SDN implementing VNF throughout the plant.

Yaser et al. proposed a comprehensive framework model based on a software deinition to simplify IoT

management process [77]. It abstracts all control and management operations from underlying devices and

places them in the middleware layer to hide the complexity of traditional system architectures. It is a model for

forwarding, storing, and protecting generated data from IoT objects through integrated software, and is ideal for

use in edge computing and edge network environments. Qin et al. designed a software-deined architecture by

extending the Multi-Network Information Architecture (MINA) [140]. MINA is middleware with a multi-layer IoT

SDN controller. The IoT SDN controller they developed supports a variety of scheduling commands. At the same

time, this architecture can optimize the IoT network environment by using genetic algorithms. The architecture

provides diferentiated service quality for diferent IoT tasks across heterogeneous wireless networks.

3.3 Hybrid Hardware Architecture

In addition to general and mobile architecture, hybrid architecture has attracted the attention of many researchers.

Sun et al. introduced a more lexible IoT architecture called edgeIoT, which uses fog computing to collect data at

network edge [170]. Speciically, each fog node provides computing power and connects to base stations (BS).

The SDN-based cellular is used for packet forwarding between fog nodes and hierarchical calculations at each

fog node.

Chang et al. also proposed a hybrid cloud architecture model, called Edge Cloud, designed to provide low-

latency, high-bandwidth eiciency utilization [33]. As the name suggests, Edge Cloud combines edge networks

with cloud data centers for data processing and vulnerable storage. Cloud data centers host regular computing

and database components. This architecture takes advantage of edge and cloud computing to reduce latency and

save bandwidth resources.

Munir et al. also proposed a similar edge computing architecture and designed a reconigurable layered fog

node architecture that can be suitable for fog computing applications [120]. Diferent from edgeIoT, the bottom-up

abstraction of Munir’s architecture includes the application layer, analysis layer, virtualization layer, and hardware

layer. The hierarchical architecture facilitates the abstraction and implementation of edge computing paradigms

that are distributed in nature and involve multiple vendors. This architecture analyzes the characteristics of

applications and reconigures the fabric resources to maximize the mobile workloads of the service for satisfying

peak workload demands.

4 OPERATING SYSTEM

The IoT nodes usually connect to the Internet through communication protocols. Due to the heterogeneous nature

of IoT, many diferent communication protocols are adopted in the system. Moreover, there are many IoT devices,

including mobile phones, sensors, and other hardware platforms, such as Aurdriono [67], Raspberry [114], Intel,

and Zolertia Z1 [53]. The operating system can bridge all the diferences between these devices and provide a

uniied application programming interface. Considering the limited memory and power, traditional operating

systems, such as the Linux and Berkeley software distribution (BSD), are not suitable for IoT devices. The
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general operating system in IoT is ascendant. Many companies and research institutes invest many resources in

researching IoT operating systems. Current popular IoT operating systems include LiteOS, Contiki, Win10IoT,

FreeRTOS, and mbedOS [13]. Fig. 5 shows a typical IoT operating system infrastructure. In general, IoT operating

system is supported by the kernel, end-to-end communication, peripheral components (e.g., the ile system, Java

virtual machine, XML ile parser), industry framework, and integrated development environment.

Although IoT operating systems have been developed for several years, applying edge computing in IoT brings

some new demands:

• Realize scalable kernel size. The core of the operating system should be able to adapt to various coniguration

environments, from low-end embedded applications with small to tens of kilobytes of memory to complex

applications with up to tens of Minionbytes of memory.

• Satisfy real-time, high reliability, and energy-saving requirements.Kernel should also have some features

of the general embedded operating system, such as predictable external event response time, predictable

interruption response time, control, and management mechanisms for various external hardware.

• Shield the characteristics of IoT fragmentation and provide a uniied programming interface. Frag-

mentation refers to various hardware device conigurations, and diferent application areas vary widely. The

"fragmentation" feature has constrained the development and growth of IoT.

• Reduce the cost and time of application development. The IoT operating system is a public business

development platform with rich and complete IoT basic functional components and application development

environments, which can reduce the development time and cost of applications.
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Fig. 5. A typical IoT OS infrastructure.

There have been many surveys focusing on IoT op-

erating systems [58, 80, 121]. However, all of them

neglect to discuss the applicability of IoT OS in edge

computing. Thus, they cannot illustrate the new fea-

tures and requirements for operating systems in the

ECDriven-IoT area. In this section, we discuss chal-

lenges for the operating system area, in terms of archi-

tecture, real-time support, networking technologies,

and energy eiciency. Also, considering many IoT op-

erating systems have been proposed in the community,

we only illustrate some of the most used IoT operating

systems in detail.

4.1 Architecture of IoT Operating System

The operating system architecture can largely inlu-

ence the kernel size of the system. Current mainstream

OS architectures can be categorized as monolithic,

micro-kernel, virtual machine, or layered ones. The monolithic architecture embeds necessary OS components

and applications within its kernel, which could increase the kernel size and the diiculty of adding new features

or deleting old ones. The micro-kernel architecture provides minimum functions in the kernel. Thus, applications

and OSs are considered decoupled modules to make them easy to be added or be removed. So, the extension

of such architecture will be more lexible. Also, a small kernel size makes the micro-kernel architecture more

suitable for the ECDriven-IoT. Another type of OS architecture is the virtual architecture, in which a virtual

machine mimicking hardware is exported to user programs. As an improvement to early monolithic systems, this

system architecture has modules as a layer-based architecture. Each layer has diferent functionalities. However,

a few IoT devices adopt the virtual and layered architecture, so we mainly focus on the irst two architectures.
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4.1.1 Architecture of Contiki. With a modular architecture, Contiki can eiciently reduce the size of the system,

and multiple embedded OSs choose modular architecture due to its small size. Contiki is an event-driven OS with

multi-threading supports, thus providing optional threading facilities for every process. Due to its customization,

ease of extension, and better reliability, this OS can serve as a memory, ile, and time server [80]. In the ECDriven-

IoT, it can meet the requirements of heterogeneity.

4.1.2 Architecture of LiteOS. As a UNIX-like OS, LiteOS provides an abstraction of IoT devices. LiteOS is also a

modular architecture OS. To minimize the programming learning complexities, it provides an eicient way and

operating features, thus allowing user-friendly operations. The main feature of LiteOS is that it provides a shell

and a hierarchical ile system. Moreover, LiteOS has a much smaller code footprint, thus making it suitable for

other platforms. The kernel of LiteOS is a subsystem of the whole system architecture. Dynamical loading and

multi-threading are implemented in the kernel, thus providing concurrency supports [28]. However, LiteOS slows

down the program execution under the limitation of hardware and consumption power. Multiple approaches

have been proposed to solve this problem.

4.1.3 Architecture of RETOS. RETOS can solve various problems in IoT applications. RETOS was developed with

the aims of reconiguration, vigorous activity, and eiciency of resources, so it can eiciently deal with diiculties

faced by IoT sensor nodes. As a modular system, RETOS ensures eiciency and reliability through a dual model,

operation, and code checking. Moreover, RETOS can prevent hardware manipulation, memory access, kernel

reading, and other dangerous operations [29]. The RETOS performs well in the ield of wireless sensor networks.

However, when applied in ECDriven-IoT, RETOS cannot satisfy other requirements, such as real-time response

and a uniied programming interface.

4.1.4 Architecture of RIOT. The ECDriven-IoT consists of billions of IoT devices and edge nodes. These devices

usually have small memory, low power consumption, and limited communication bandwidth. Considering the

requirements of real-time systems, the ECDriven-IoT needs a broader vision to embed intelligence to smartphones

and portables, to achieve the connection of everything [179]. To save memory, RIOT adopts a micro-kernel

architecture, so the size of its kernel is minimized. Adopting multi-threading aims to be efective with energy,

memory, modulator, and APIs. Also, RIOT is a highly reliable OS, which is important in the ECDriven-IoT system.

4.2 Scheduling Algorithm and Real-time Support

In the ECDriven-IoT system, computing tasks are executed locally or oloaded to edge nodes. For real-time

applications, computing tasks need to be completed in a short time. Especially in ECDriven-IoT, execution time

becomes a critical metric because of transmission latency demands. The scheduling algorithm determines the

execution orders, how tasks are executed, and when tasks are completed. A scheduler targets high throughput,

high energy eiciency, fairness, and good resource utilization.

Scheduling is of great importance for deciding the time interval of task execution. Real-time scheduling

algorithms aim to maximize throughput and complete tasks within the given time constraint [9]. In edge

computing scenes, computing tasks can be divided into periodic and aperiodic tasks. So, these tasks are scheduled

with periodic and aperiodic schedulers, respectively [160]. The operating system in the ECDriven-IoT is promising

to handle real-time tasks eiciently. In the following, we will explore the scheduling schemes of the typical IoT

operating systems.

4.2.1 Scheduling Algorithm of Contiki. Contiki has a hybrid programming model. It is primarily an event-driven

OS but also supports multi-threads. As Contiki is event-driven, the processes will run to completion. Contiki

provides support for multi-threading, which is implemented as a library on the top of the kernel. As for the real-

time response, Contiki is mainly event-driven and does not implement any scheduling algorithm. Applications
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are handled according to their priority [32]. Thus, Contiki is not suitable for ECDriven-IoT, as it does not support

real-time capabilities [58].

4.2.2 Scheduling Algorithm of TinyOS. TinyOS has multiple scheduling techniques and algorithms. In the event-

driven model, a hardware interruption is handled by the event handler, and it can cause preemption. The single

task queue adopts the irst-in-irst-out (FIFO) strategy and has no interruption for the FIFO algorithm, which is a

non-preemptive algorithm. The new version of TinyOS has a new feature, priority scheduling. Thus, tasks with a

higher priority can interrupt low-priority ones to meet their deadline demands. Moreover, TinyOS implements

cooperative algorithms, such as earliest-deadline-irst (EDF) and adaptive double-ring scheduling (ADRS). The

system enables preemption to ensure that tasks with a higher priority are completed before other tasks. However,

preemption involves context saving and switching, which makes the scheduler more complicated and consumes

more power. Thus, the preemption happens only in particular conditions. Owing to its eicient scheduling

algorithm, TinyOS is considered one of the best OSs for IoT platforms. However, the real-time requirements

are more strict when applied to edge computing. TinyOS still has many shortcomings in terms of real-time

applications.

4.2.3 Scheduling Algorithm of RETOS. RETOS provides high concurrency with preemption functions. As a multi-

thread OS, RETOS implements the boosting thread scheduler and introduces event-aware thread scheduling,

which boosts the priority of threads [80]. To support real-time applications, RETOS enables developers to assign

task priority explicitly and provides kernel dynamic priority management. Thus, RETOS can satisfy the latency

requirement in the ECDriven-IoT system.

4.2.4 Scheduling Algorithm of RIOT. Using a scheduler through ixed priority and preemption, RIOT allows for

soft real-time capabilities [71]. RIOT can handle low-priority tasks to deal with high-priority applications. RIOT

applies a simple principle to achieve real-time scheduling: When a high-priority thread arrives, threads with

low priority will be preempted, and the high-priority task runs right now until inished. What’s more, RIOT can

minimize response latency and power consumption by mimicking the parallel execution of events with the same

priority. At the same time, it brings no context switches fee.

4.3 Networking technologies in Operating System

In the ECDriven-IoT system, IoT devices oload collected data to edge nodes or cloud data centers. Thus, the

connectivity between IoT devices and edge nodes is a fundamental guarantee to transport data. The essential

elements of these devices are the device, local network, and the Internet. Communication technologies in the

IoT community vary from device to device, and we will discuss them in the next section in detail. For operating

systems, the network stack will hugely inluence the performance of applications. Thus, operating systems should

consider heterogeneous communication protocols.

4.3.1 Networking Stack for Contiki. Contiki supports not only a full TCP/IP stack but also a lightweight stack

for low-power radio communication. Contiki implements �IP, the irst standalone stack [11]. �IP supports IPv4

and IPv6 with a limited memory, which is suitable for the ECDriven-IoT. It can communicate with both the

lightweight stack and full-stack, and its peers do not need to have a complete protocol stack. Also, Contiki applies

Rime [46], so Contiki supports low radio communication and various communication modes. The module of

Rime employs simple functions, making the stack lightweight and suitable for IoT. However, Contiki does not

support as many communication protocols as the system requires when it refers to edge computing.

4.3.2 Networking Stack for TinyOS. In the ECDriven-IoT, both IoT devices and edge nodes are of limited energy

and memory, and these nodes are connected to the Internet and communicate with each other. Therefore, we need

an operating system that can provide stable communication links between devices. TinyOS adopts a protocol that
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can be used for the transport layer, networking layer, and medium access control layer. Thus it can consume as

fewer layers as possible and make TinyOS reliable and robust [91]. Moreover, TinyOS can be suitable for various

applications, so it is a good choice in the ECDriven-IoT.

4.3.3 Networking Stack for LiteOS. In LiteOS, MAC and communication protocols are taken as threads or iles.

Hence, it provides lexibility for diferent communication protocols. These protocols can be loaded dynamically as

applications. During the communication, data packets will be sent to the port where the protocol is listening [28].

This feature makes it very suitable for IoT applications that vary in the communication protocol, but it has

diiculty satisfying the latency requirements for treating the protocol as an application.

4.3.4 Networking Stack for RETOS. RETOS divides the kernel into static and dynamic parts for adapting to

resource-constrained hardware environments. This design enables an easy programming interface for application

developers. The static kernel part is optimized at the device driver level and guarantees the kernel performance

in transmitting data packets and maintaining network connectivity. The dynamic kernel part is similar to LiteOS

and implemented as loaded modules. So, diferent routing and communication protocols can be managed as the

dynamic part and applied to diferent applications [31].

4.4 Power Consumption

The energy eiciency of the operating system in ECDriven-IoT is an essential requirement, as most IoT nodes in

the system are power-limited. However, all nodes should communicate with other nodes, which is a process that

consumes energy. Hence, a device should consume as little energy as possible [41, 175]. The heavy research area

is based on energy-eicient protocols [30].

4.4.1 Power Consumption of Contiki. Since Contiki’s kernel does not embed any power management algorithm,

the power management strategies are customized by application developers. Contiki provides an interface to

applications and allows them to manage the power system. In the ECDriven-IoT, the IoT nodes need power

management schemes to meet the lower-power limits. As an event-driven OS, Contiki wakes up to respond to an

interruption, and the poll handlers handle these events. In this manner, power management schemes must be

designed to reduce the overall power consumption. When using Contiki, programmers must pay attention to

power management to achieve the high energy eiciency of applications.

4.4.2 Power Consumption of TinyOS. Diferent techniques have been incorporated into TinyOS to achieve

minimum power utilization. TinyOS with software thread integration is a method in which energy is conserved

in TinyOS. By integrating software threads, TinyOS makes full use of idle time during transmission, processing,

and sensing of data [139]. In TinyOS, which supports high-power listening (HPL), TinyOS estimates the overall

load of the sensing nodes and then dynamically allocates the required energy to the sensing nodes [93]. This

method can only be possible with an accurate estimation of energy consumption in sensing nodes. Sensing nodes

consume energy in a variety of ways [3]. TinyOS, in this case, is the most eicient OS because it estimates the

energy consumption by the sensing nodes, TinyOS itself, and its components. TinyOS supports various methods

for estimating the energy consumption of diferent applications.

4.4.3 Power Consumption of LiteOS. LiteOS is a multi-threaded operating system, and while it does not introduce

any overhead, it consumes more energy than TinyOS. However, LiteOS has a small memory footprint, so it can

reduce energy consumption to a minimum, making it suitable for the ECDriven-IoT to some degree.

4.4.4 Power Consumption of RETOS. RETOS is a multi-threading operating system, so it adopts many scheduling

operations. Threads scheduling involves signiicant context switching. All these operations are energy exhaustive.

To address these issues, RETOS adopts a variable time tick, and timer requests are scheduled according to the

remaining tasks, which can efectively minimize energy consumption.
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Table 3. Comparison of operating systems.

Feature Contiki TinyOS LiteOS RETOS RIOT

Architecture Modular Monolithic Modular Modular Modular

Real-time

Support
No No No Yes Yes

Communication

Support

FileSystem,

Network,

6LoPWAN,

Command,

Line Interface

6LoWPAN,

IPv6,

Multi-hop Protocol

LoRaWAN,

FileSystem,

Network,

6LoWPAN

Static/Dynamic,

Network

LoRaWAN,

FileSystem,

Network,

6LoWPAN,

GraphicalUI

Power

Consumption

No power

management
Most eicient Low Timer ticks

Deep

sleep mode

5 COMMUNICATION PROTOCOL

Fig. 6. Various wireless network communication

protocols.

The IoT sensing layer collects sensing data (e.g., sound, light, elec-

tricity) through sensors. Based on the terminal module of the

network layer, base stations are connected to the network layer

to realize data transmission after data acquisition. The network

layer is responsible for transmitting data collected by the sensing

layer. It should use diferent communication technologies based

on speciic scenario characteristics. The application layer can be

viewed as the data and business platform of the IoT. As the collec-

tion point of all IoT terminal data, the data platform is responsible

for uniied data storage and analysis.

The communication protocol at the network layer is a group of

competitors. It is also the focus of this section. In the ECDriven-

IoT system, each terminal device and edge network device can

be regarded as an independent individual. The communication

between such independent components has the characteristics

of hardware heterogeneity, low power, and short communication

time. These features pose a great challenge in selecting and designing communication protocols. IoT network

layer communication protocols can be divided into short-range and long-distance communication protocols.

Short-range communication protocols include Wi-Fi [72], Bluetooth technology [66], ZigBee [50], and UWB [8].

Long-distance communication protocols include NB-IoT [5] , LoRaWAN [165] and 5G [14]. Fig. 6 shows the rate

and coverage of various wireless network communication protocols.

5.1 Short-range Communication Protocols

We consider placing all computing processes in edge devices and networks as much as possible in an IoT

environment. Therefore, the inter-communication process between edge devices and edge networks in computing

is particularly critical. The short-range communication protocols have several advantages and disadvantages, each

of which applies to diferent IoT environments. Therefore, according to speciic communication environments

and requirements, it is worthwhile to study and improve the communication protocols so that the calculation

process can be more eicient.

The most popular Wi-Fi technology has a fast transmission speed. However, with the speed increase, the power

consumption also increases sharply, and then the transmission distance becomes a bottleneck. Long-distance

transmission requires an access point (AP) to bridge the data link as a middleman, which will largely increase the
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cost. Therefore, Wi-Fi technology is more suitable for indoor wireless Internet access scenarios and terminal

applications such as PCs and PDAs. Both Bluetooth and Wi-Fi work on the 2.4GHz band, so there are some

interference problems in the same frequency band. Bluetooth consumes slightly less power than Wi-Fi, and the

transmission speed is far lower than Wi-Fi. It is widely used in asset tracking, location tags, and medical sensors,

such as smartwatches and Bluetooth positioning. ZigBee technology has relatively low power consumption and

short communication distance. It is mainly used in wireless sensors and medical scenes. UWB technology has a

relatively clean frequency band and no interference from other communication technologies. It is currently used

in high-precision positioning scenarios. These popular short-range communication protocols can be well applied

in the ECDriven-IoT as the communication basis between edge devices.

5.1.1 Wi-Fi. Vivek et al. adopted Wi-Fi and ZigBee to implement a home automation system [178]. With the help

of light, temperature, and safety feedback loops, the system provides comfortable brightness, temperature regula-

tion, and basic safety by utilizing popular Wi-Fi signals provided by IoT devices, such as smart air conditioners,

smart lights, and thermostats. Shi et al. used Wi-Fi signals to capture the behavioral characteristics of daily human

activities in their paper [161]. This method does not require hardware devices and only needs to recognize users’

unique physiological and behavioral characteristics through the Wi-Fi signal, thereby realizing some functions

such as user authentication. Meanwhile, Acer et al. utilized Wi-Fi aware network search to analyze IoT data [4].

Wi-Fi technology’s data rate is fast enough for ECDriven-IoT applications. However, as transmission speed

increases, the power consumption of devices also increases dramatically. In edge devices, energy saving is a

critical factor. So, Wi-Fi may not adapt to some scenarios well in ECDriven-IoT systems.

5.1.2 Bluetooth. In recent years, much of the work on wireless sensor networks targets to be eicient, low cost,

scalable, and easy to deploy. Optimizing battery usage and power consumption reduces costs and extends sensor

life. Bluetooth is an ideal communication protocol for the ECDriven-IoT. Its low power consumption makes edge

devices run for a long time and reduces maintenance. Generally speaking, edge computing does not require high

data transmission speed.

Nair et al. introduced an architecture that uses the Bluetooth low energy (BLE) communication standard and

hybrid topologies to reduce the power consumption of communication systems [122]. The BLE is considered

a low-power version of traditional Bluetooth. However, the extensive use of BLE in deployments can lead to

high collision rates, especially in device-intensive IoT environments. To alleviate this contradiction, Harris et al.

proposed opportunistic listening, an extension of the BLE active mode with tags and scanning devices [69].

For smart cars that use Bluetooth technology, users can connect their smartphones with their cars. In this case,

they can replace the phone’s speaker and microphone with the car’s ones, and use the car’s devices to make a

call or message. At the same time, you can also use your mobile phone to read diagnostic data about your body

everywhere [125].

5.1.3 ZigBee. The smart home is an IoT application closely related to human life. ZigBee is a widely-used

communication protocol in the smart home. At the same time, ZigBee is also the ideal communication protocol

for the ECDriven-IoT. Because of its low power consumption, ZigBee can be suitable for IoT environments that

include massive wireless sensors.

Moravcevic et al. proposed a way to integrate the ZigBee protocol into smart homes [116]. This approach

irstly deines a home device as a service that can add ZigBee devices from diferent manufacturers to the system.

Various home devices on the market today can communicate using the ZigBee protocol. So, energy-eicient

devices that support ZigBee can be added to the smart home system.

In addition to smart home applications, ZigBee can combine with other new technologies to control and

communicate between IoT devices. Ferreira et al. proposed a model combining event capture and device con-

trol [55]. This model is implemented using basic general techniques such as RESTful API or UPnP. With ZigBee
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communication technology, this easy-to-capture body interaction allows developers to make fun and useful

applications. Another important aspect of this technology is the data exchange between various types of endpoints

by using standardized communication protocols. It allows a wide variety of programs to utilize data exchange to

achieve speciic user needs, even though these programs are independently developed by developers around the

world.

Meanwhile, the privacy and security of IoT in the communication protocol layer have also received the attention

of researchers. Ronen et al. discovered a new type of worm threat [147]. When there are too many IoT devices,

and the density exceeds a certain amount, the worm will spread rapidly in a large area of the communication

layer, and adjacent IoT devices will infect each other. They veriied the infection with the help of the Philips Hue

Smart Light platform. They use ZigBee only as their wireless communication technology and found that this

worm threat can be transmitted directly between various types of adjacent light bulbs, which are light bulbs that

can communicate with each other on the same platform. The contagious nature of this attack can cause city

lights compromised on a large scale in a matter of minutes.

5.1.4 UWB. Ultra wideband (UWB) is a communication technology that uses a non-sinusoidal narrow pulse of

nanoseconds to microseconds to transmit data. UWB was used in early applications of short-distance high-speed

data transmission. In recent years, many researchers have begun to use their sub-nanosecond ultra-narrow

pulses for short-range accurate indoor positioning. The UWB architecture inds its place in surveillance systems,

medical applications, and IoT applications. Antennas using UWB communication technology have compact

hardware and low power consumption. This feature is critical for portable IoT devices. Bekasiewicz et al. described

this UWB antenna structure for IoT [21]. This well-designed structure enables small-sized physical areas while

maintaining electrical performance. What sets UWB apart from other short-range communication protocols is

that its frequency band is relatively clean. It is usually used for precise positioning, but the application scenario

is not rich enough.

5.1.5 6LoPWAN. When we irst considered the sensor communication network, the irst thing that came to

mind was the use of Internet Protocol (IP). IP is unsuitable for sensor or personal area networks because it is too

heavy for these applications. Recently, more and more research has started to work on low data rates, low power

consumption, and small-size IP protocols. The IPv6 low-power wireless personal area network (6LoWPAN) is a

low-speed wireless network standard. It supports the use of IP in IEEE 802.15.4 wireless networks [76]. The key

point in the breakthrough of 6LoWPAN-related work is to achieve a very compact and eicient IP, eliminating the

communication diiculties brought by the unique protocol standard. The 6LoWPAN protocol has the following

features:

• Popularity. IP networks have been adopted widely. IPv6, the core technology of the next-generation Internet, is

also accelerating its popularity. It is more acceptable to use IPv6 in low-speed wireless personal area networks.

• Applicability. The IP network protocol stack architecture is widely recognized, and the low-speed wireless

personal area network can be developed simply and eiciently based on this architecture.

• Adequate address space.When IPv6 is applied to low-speed wireless personal area networks, the biggest

highlight is the large address space, which is precisely needed for deploying large-scale, low-speed wireless

personal area network equipment.

• Stateless automatic address coniguration. When a node boots up in IPv6, it can automatically obtain

a MAC address and conigure an IPv6 address. This feature is attractive for sensor networks because it is

not feasible to conigure the user interface for sensor nodes in most cases, and nodes must have automatic

coniguration capabilities.
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Table 4. Comparison of Wi-Fi, Bluetooth, ZigBee, UWB, 6LoPWAN.

Wi-Fi Bluetooth ZigBee UWB 6LoPWAN

Data Rate 1Gbps or more 1Mbps 100Kbps 53-480Mbps 250Kbps 40Kbps

Communication

Distance
20-200meters 20-200meters 2-20meters 0.2-40meters 10-100meters

Frequency

Band
2.4GHz/5.8GHz 2.4GHz 2.4GHz 3.1GHz

10.6GHz

2.4GHz 915MHz

Security Low High Medium High High

Power

Consumption
High Medium Low High Medium

Cost High Low Medium High Low

Application
PC, PDA wireless

Internet access

Mobile phone

transmission,

Medical health

Wireless

sensing

Accurate

locating
Smart home

• Easy access. Low-speed wireless personal area networks use IPv6 technology to make them easier to access

other IP-based networks and next-generation Internet, enabling them to take full advantage of IP network

technologies.

These features are ideal for ECDriven-IoT communication environments, especially for IoT applications that

require large-scale deployment of low-power communication devices. Mulligan et al. introduced a simple 6LoW-

PAN protocol architecture and compared it with ZigBee [119]. Ma et al. introduced the advantages of 6LoWPAN

and details of some key technologies [103].

The short-distance communication protocols in IoT mainly include Wi-Fi, Bluetooth, ZigBee, UWB, and

6LoPWAN. Tab. 4 shows the main features and diferences between them.

5.1.6 Cross Technology Communication. Because of the hardware complexity and network heterogeneity of the

ECDriven-IoT, cross-technology communication (CTC) is becoming a popular research direction. Considering the

IoT environment of densely deployed devices, mainstream wireless technologies typically share radio spectrums.

Wireless technologies shared spectrums will inevitably interfere with each other. But every coin has two sides.

This drawback also makes cross-protocol communication possible.

For example, Zhou et al. introduced a cross-technology communication protocol, ZiFi [200]. The system

uses ZigBee radios to identify the presence of Wi-Fi networks through the unique interference characteristics

generated by Wi-Fi beacons, which can signiicantly improve the standby energy eiciency of Wi-Fi devices.

Kim et al. introduced FreeBee [87], which supports three popular wireless technologies (Wi-Fi, ZigBee, and

Bluetooth) across technology broadcasts. FreeBee’s core idea is to modulate symbolic messages by changing the

timing of three standard beacon frames without additional frames and traic.

5.2 Long-distance Communication Protocols

In a long-distance scenario, if terminal devices cannot solve the power supply problem, a technology with lower

power consumption and broader coverage is needed to meet the requirements of IoT communication. Thus, driven

by business and technology, some researchers and enterprises have developed a new type of communication

technology, LPWAN, a low-power WAN technology [165]. Long-distance and low-power communications have

a broader application prospect in future IoT environments because not all IoT and edge devices are in close

proximity. Thus, LPWAN is more suitable for machine-to-machine (M2M) communication in edge computing.

Tab. 5 shows the main features and diferences between these three long-distance communication technologies.
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LPWAN is a long-range wireless network communication technology that has been widely used to optimize

M2M communications in IoT applications. The main technical advantages of LPWAN are ultra-low power

consumption, long-distance, low throughput, and broad coverage. Some typical applications include urban

coverage, remote meter reading, manhole cover testing, and ofshore ishing vessel testing. Long-distance

communication protocols are also often used for IoT communication for speciic remote edge devices.

5.2.1 NB-IoT. NB-IoT is called narrowband IoT and can be deployed directly on LTE networks. Good compatibility

reduces the cost of deployment. It has lower power consumption. Theoretically, the terminal module carrying

NB-IoT uses a battery and has a standby time of up to 10 years. The reduction in module costs has also led more

companies in the market to use this technology. In 3GPP, an LTE-based narrowband system has been introduced

to support the IoT [22].

Mangalvedhe et al. [107] introduced the NB-IoT system design, some potential problems, and solutions for

the actual deployment system. Adhikary et al. focus on the coverage of NB-IoT in IoT environments [5]. They

believe that NB-IoT provides broader coverage than traditional LTE systems. Petrov et al. proved the possibility

of applying NB-IoT to IoT cars [137]. They conducted a comprehensive system-level assessment revealing the

impact of in-vehicle NB-IoT communication on critical metrics, such as reliability, transmission delay, and

energy eiciency. The results show that the development potential of NB-IoT may meet the future performance

requirements of IoT vehicles.

The NB-IoT has four features: 1) Wide coverage area. NB-IoT provides better indoor coverage. 2) Strong connec-

tivity ability. NB-IoT supports more than 100,000 connections in a single workspace. 3) Low power consumption.

Usually, the standby time of the NB-IoT terminal device can last for several years. 4) Low cost. The NB-IoT

license band can be deployed in-band, guard band or independent carrier mode to coexist with existing networks.

Therefore, NB-IoT can be widely used in various related industries, such as intelligent remote meter reading,

asset tracking, intelligent parking, and intelligent mechanized agriculture.

5.2.2 LoRaWAN. LoRaWAN is a long-distance communication protocol diferent from NB-IoT. It is an ultra-

long-range wireless transmission technology based on chirp spread spectrum technology promoted and adopted

by Semtech. At the most basic level, wireless protocols like LoRaWAN are relatively simple. LoRaWAN is a star

topology [132]. This type of structure is generally better than a mesh network because it has advantages in

maintaining battery power and increasing communication range.

Many researchers have studied the performance and metrics of systems using this protocol. Petric et al.

used the LoRa FABIAN protocol stack to generate and then observe the traic between IoT nodes and LoRa

stations to perform the test [136]. In addition to long working life and low production costs, coverage is a

key performance indicator for long-distance communication protocols. Petajajarvi et al. studied the coverage

of LoRaWAN technology through actual measurement work [135]. Bor et al. developed a platform for LoRa

performance evaluation and described a protocol that leverages LoRa’s unique features on top of LoRa’s physical

layer [25]. This protocol enables energy-eicient wide-area multi-hop data collection.

Because of the similar name, many people confuse LoRaWAN with LoRa. However, LoRaWAN refers to the

networking protocol of the MAC layer, and LoRa is just a protocol for the physical layer. From the perspective of

network layering, LoRaWAN can use any physical layer protocol, and LoRa can also be used as the physical layer

of other networking technologies. Several technologies that compete with LoRaWAN also use LoRa at the physical

layer. LoRa is one of the LPWAN communication technologies and a long-distance communication solution

based on chirp spread spectrum technology. This solution changes the previous trade-ofs between transmission

distance and power consumption to provide users with a simple system that can achieve long-distance, long

battery life, and large capacity, thereby expanding the network.
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Table 5. Comparison of NB-IoT, LoRaWAN and 5G.

Spectrum

Cost

Module

Cost

Coverage Battery Perfor-

mance

Data Rate Flexibility

NB-IoT Authorized,

high cost

≤20 dollars 18-21 km Fast power con-

sumption

200Kbps Limited by

operator

LoRaWAN Unauthorized,

low cost

≤10 dollars 12-15 km Long lasting electric-

ity

0.2-37.5Kbps Self-built net-

work

5G Authorized,

high cost

∼200 dollars 10-100 m Long Life Time 10 Gbit/s Base-station

provide

5.2.3 5G. With many emerging scenes, such as autonomous driving, and smart cities, requiring higher data

rates, the ifth-generation (5G) cellular network has arisen with a high data rate and broad communication areas.

In ECDriven-IoT, the low latency and high energy eiciency requirements lead to smaller transmission time

intervals. Moreover, small cells can achieve high area capacity in densiication. All of these have led to new radio

access technologies and a new core network [158]. With the help of higher frequencies, large-scale antennae can

be deployed at base stations. Thus array gains can overcome the shortage of higher path loss and can gain spatial

multiplexing [94].

With a resilient cloud-native core network and end-to-end support for network slicing, 5G is distinguished

by high lexibility and scalable network technology. Based on three major user case domains, 5G can support

deterministic and isochronous communication with high reliability and availability. 5G can be applied in the

ECDriven-IoT with hard guarantees for latency bounds, packet loss, and reliability, as well as synchronization

down to the nanosecond level [59]. Moreover, the seamless change of the application server can be supported by

5G with low latency. 5G application enablers will be studied for interactions between users, application servers,

and the network in a complementary manner [82].

6 COMPUTING

We are not only concerned with the underlying hardware and communication protocols but also computational

processes in IoT and edge networks. These research areas include algorithmic acceleration for diferent scenarios,

distributed computing in IoT [48], green computing [92], and caching [183], as well as SDN, NFV. These new

computational studies lack suicient focus, but they all have huge development prospects and can optimize edge

computing in IoT.

6.1 Computation Ofloading

The ECDriven-IoT has many hardware and protocol problems, so the computing capability of edge nodes is

limited and how to compute eiciently is still a tricky challenge in the ECDriven-IoT [90, 104]. Some innovative

algorithms have been proposed to overcome the limitations of the ECDriven-IoT.

Data can be processed and pruned in edge nodes before being transmitted to the cloud through intelligent

gateways. However, considering edge nodes have limited computing capabilities and energy power, only a part

of the data can be processed locally. In computation oloading, it refers to the oloading decision [39], server

selection, Wireless resource allocation, transmission power setting, computation resource allocation, and the

slot partition. Aazam et al. expanded the integration of IoT and cloud computing. They analyzed the network

architecture and performance of this concept [1].

Chen et al. proposed a game-theoretic approach to achieve eicient computation oloading for edge computing

and formulate the distributed computation oloading decision-making problem among end devices as a multi-

user computation oloading game [37, 38]. Mao et al. investigated a green edge computing system with energy
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harvesting devices and developed a computation oloading strategy that jointly decides the oloading decision,

the CPU-cycle frequencies for mobile execution, and the transmit power for computation oloading [109].

Moreover, research has been done on resource allocation for a multi-user system based on time-division multiple

access (TDMA) and orthogonal frequency-division multiple access (OFDMA). The optimal resource allocation is

formulated as a convex optimization problem for minimizing the weighted-sum mobile energy consumption

under the constraint of computation latency [193].

6.2 Distributed Computing

As IoT and edge computing both have the feature of being distributed everywhere, how to organize system

resources and combine them is another diiculty in computing in the ECDriven-IoT. In this context, distributed

computing provides an opportunity to solve this problem eiciently.

Distributed computing is the process of aggregating the power of several computing entities that are logi-

cally distributed and may even be distributed in geography, to collaboratively run a single computational task

transparently and coherently, so that they appear as a single, centralized system.

Chien et al. introduced the idea of distributed computing in IoT [40]. They proposed a distributed smart camera

architecture used in video sensor networks to accelerate computer vision algorithms for smart cameras in the IoT.

Similarly, edge computing is also a distributed computing method in IoT. Hesham et al. realized this vision. They

used edge computing in a distributed computing environment to move workloads from a centralized cloud to

the network edge while verifying edge eiciency and resourcefulness [48]. Distributed computing is a cheap

and eicient alternative computing method. It can compute in any location, so it can eiciently make use of the

computing capability of edge nodes and reduce the transmission bandwidth requirements, which can push the

development of the ECDriven-IoT.

6.3 Caching

In computation oloading and distributed computing, massive data are generated and transmitted among edge

nodes, which inluences communication latency and IoT devices’ power. Caching is an efective method to

increase computing speed and save computing bandwidth. In the ECDriven-IoT scenes, some applications require

few computing resources and storage in IoT devices and edge nodes. Thus, these remaining caches can be utilized

more eiciently, reducing latency and improving system eiciency. The idea of caching is transplanted to edge

computing to reduce the data transmission cost and system delay. At the same time, it will make design and

development more diicult.

Combining caching and edge computing with IoT is a promising means of alleviating traic in a backhaul. With

network stability taken into account, Du et al. formulated a stochastic optimization problem to jointly optimize

the oloading decision and cache decision making [45]. Xia et al. [186] investigated a cache-aided mobile edge

computing network, where the source oloads the computation task to multiple destinations having computation

capacity with the help of a cache-aided relay. However, their work does not explore the cache-aid with IoT. So

when applied to IoT, how to eiciently solve the complexity of IoT and edge computing is still a challenge.

Distributed caching is widely used in the caching deployment of base stations. However, the caching capacity

of a single BS is generally particularly limited, which will degrade the performance of the wireless mobile

network [154]. Li et al. designed a collaborative cache scheme in the heterogeneous mobile edge computing

network, in which the edge caching of macro base stations and small base stations are utilized to bring storage

resources closer to users [96]. For most IoT devices, the smaller the cache size, the more complex the topology.

Therefore, more research should explore the combination of edge computing and IoT in caching to make it a

more eicient way to reduce latency and energy consumption.
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Another important research direction for cache computing is cached content placement [129]. In general,

cached content placement system information is updated continuously to improve the cache hit ratio. In an edge

computing environment, caching typically occurs on user devices. The cache at the user device may allow the user

to download the requested content in a more eicient manner using device-to-device (D2D) communication [184].

As the density of edge devices increases, the cache advantages of user devices will be relected in their low

deployment costs.

6.4 Sotware Defined Network and Network Function Virtualization

With the development of the ECDriven-IoT, the number of users has grown exponentially. Network developers,

service providers, and network carriers provide up-to-date services to the users. Thus, the network is expanding

exponentially in the same way and how to eiciently operate these networks is complex. Thus, SDN has emerged

as eicient network deployment and management solution [16]. SDN provides a separation between the control

plane and the data plane, which equips network developers with the ability to eiciently expand the network

and the convenience to manage network resources. Furthermore, network operators can conigure, upgrade,

and maintain network resources dynamically. Since SDN is logically deined, the controller can access these

network resources more eiciently [195]. In edge computing, SDN can provide lexibility and manageability. For

the ECDriven-IoT, the data generated and collected in IoT devices need to be routed to the edge or cloud. SDN

can alleviate these complex communication requirements with service discovery, provisioning, and orchestration

at the edge nodes.

Network function virtualization (NFV) deals with the hardware-oriented function transformation, such as

irewalls or DNS for the software applications [111]. It can provide dynamic service orchestration. Thus, eicient

services deployment can be realized without hardware support and achieve the service function chain (SFC) [86].

Due to the heterogeneous nature, ECDriven-IoT, SDN, and NFV can be integrated into a whole system and

interact with each other. NFV can operate as a service orchestrator, and SDN can automate the service chaining

by installing customized low rules at the forwarding stations. This system can improve performance in real-time

applications and reduce transmission delays, which are signiicant metrics in these application scenes [81].

7 SECURITY AND PRIVACY ISSUES IN ECDRIVEN-IOT

When applying edge computing to IoT, new and unforeseen security and privacy problems will arise. Due to the

high mobility and heterogeneous features of ECDriven-IoT, the system is more vulnerable to potentially malicious

activities. In addition, many advanced security mechanisms cannot be transplanted to IoT devices and edge

nodes owing to the limited computing capabilities and power. In the ECDriven-IoT system, the communication

between IoT devices and edge nodes is relatively frequent, thus making the network more unstable. In terms of

privacy, many users’ privacy-sensitive information will be stored in IoT devices and edge nodes, or transported

to the cloud server. In such a distributed architecture, security and privacy become crucial challenges. This

architecture is more vulnerable to attacks and threats. In the communication, computation, and storage process,

malicious attacks will be encountered [128]. Fig. 7 shows possible security and privacy attacks and their solutions

in ECDriven-IoT.

7.1 Security and Privacy Threats

In this section, we will illustrate potential attacks in the ECDriven-IoT system. Diferent kinds of threats of

ECDriven-IoT networks will be introduced, as well as their sources at diferent levels. Owing to the features of

IoT and edge computing, as well as the application scenes, the ECDriven-IoT faces many security and privacy

threats, such as distributed denial of service (DDoS) attacks, physical attacks, eavesdropping or sniing, and

privacy leakage [101, 146].
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(b) Solutions and countermeasures.

Fig. 7. Security and privacy threats and so-

lutions in ECDriven-IoT.

7.1.1 DDoS Atacks. DDoS attacks toward edge-computing nodes con-

sist of outage attacks, sleep deprivation, and battery draining. In outage

attacks, edge nodes will be exposed to unauthorized users and unable to

perform in the designed way [117]. As a much harder-to-detect attack,

sleep deprivation adversaries overwhelm edge-computing nodes with

an undesired set of legitimate requests. Battery-draining attackers will

deplete the battery of the edge-computing nodes or IoT sensors/devices.

DDoS attacks can also occur at the communication layer with contin-

uous or intermittent jamming [12].

7.1.2 Eavesdropping or Snifing. In eavesdropping, adversaries can

listen over communication links to acquire private information, thus

leading to privacy concerns. Through this attack, attackers can take

much important information about the system, such as user names,

personal information, or some commercial secrets [146].

7.1.3 Jamming Atacks. Jamming attacks are a kind of energy-

consumption denial-of-service attack. They can be launched in the

link or physical layer. These attacks often utilize the weakness of IoT

systems and edge computing architectures. In jamming attacks, adver-

saries intentionally lood the network with forged messages to exhaust

the systems’ communication bandwidth, computing sources, and stor-

age volumes, making the whole system unable to carry out tasks [169].

7.1.4 Malicious Hardware/Sotware Injection. Attackers can inject mali-

cious inputs into the edge-computing node servers and perform hacking

by adding unauthorized software or hardware components to the com-

munication between IoT devices and edge-computing nodes. This attack can also make adversaries acquire many

unauthorized data, thus raising privacy concerns [12].

7.1.5 Unauthorized Control Access. In the ECDriven-IoT paradigm, edge computing and IoT nodes communicate

with each other to access or share their data. However, these devices and nodes can not use complicated methods

to authorize permission access. Attackers can access one of the unsecured edge nodes and possibly control the

whole system, which is of great danger.

7.1.6 Privacy Leakage. As for privacy, the ECDriven-IoT can be applied to many personal scenes, such as

healthcare and smart homes. Thus, such personal information will be collected by IoT devices and then transmitted

to edge nodes to be processed and stored. However, considering the limited self-protecting ability of edge

computing nodes and IoT devices, privacy leakage potential exists in the ECDriven-IoT system. Furthermore, the

ECDriven-IoT system will acquire position information to serve the users, so attackers can obtain users’ physical

position or other sensitive information if they compromise the devices. Thus, how to guarantee data privacy in

the process from collection to storage is a crucial problem [12].

7.1.7 Other Atacks. The ECDriven-IoT is an emerging paradigm that combines heterogeneous resources and

devices. Thus the system is vulnerable to many attacks from diferent levels. Beyond the attacks mentioned above,

there still are non-network side-channel attacks [117], routing information attacks [182], forgery attacks [163],

replay/freshness attacks [54], and inessential log attacks [105]. Considering the importance of system security,

the community has proposed many attack countermeasures to protect this paradigm.
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7.2 Solutions and Countermeasures for Security and Privacy

In this subsection, mainstream solutions against security and privacy attacks are discussed in detail. And we

analyze the advantages and disadvantages of existing countermeasures when applied to the ECDriven-IoT.

7.2.1 Cryptographic Schemes. Cryptographic schemes are widely used and serve as eicient strategies to protect

communication protocols against various attacks [83]. Encryption/decryption solutions are inapplicable for

wired networks owing to the limited resources in IoT nodes. The standard encryption/decryption methods are

memory- and computing-exhaustive. However, edge-computing nodes are typically tiny sensors with limited

resources, such as battery power, computing capabilities, and storage memory [100]. These techniques have been

investigated and improved to suit the ECDriven-IoT paradigm. Chen et al. proposed a new security access method

without cryptographic schemes for the ECDriven-IoT paradigm. This solution beneits from the diference in the

hardware of heterogeneous wireless accesses instead of password authentication [36]. Alababy et al. constructed

a valid network security model to protect data and suggested a solution to protect the system from several

attacks[10]. Mollah et al. proposed a secure data-sharing scheme and a secure searching strategy. This sharing

scheme uses public and private key encryption to ensure its security. Thus, applications can perform secure data

search and sharing [113].

7.2.2 Secure Data Aggregation, Deduplication, and Analysis. When considering how to strengthen the system

security and privacy paradigm, we naturally take data security and privacy as the most crucial component.

For data security, the system must trace data from aggregation, transmission to analysis, throughout the data

lifetime. Secure data aggregation (SDA) is a highly secure, privacy-preserving, and eicient data compression

strategy [181]. Individual devices send their data to edge computing nodes. And then, edge nodes aggregate

these data by computing the multiplication of individual data in SDA. To provide users fair incentives, Okay et al.

employed signature techniques, the BonehśGohśNissim cryptosystem, and secret sharing. By adding noises into

the data for diferential privacy, oblivious data security and fault tolerance can be achieved [112]. In [151], to

protect against false data injection attacks, they proposed to ilter out the inserted data. To achieve better privacy,

the Paillier cryptosystem was modiied to achieve better privacy protection and is used to encrypt consumption

data from users [126]. In the ECDriven-IoT paradigm, there is an increasing demand for systems that can provide

cost-eicient secure data storage. For example, Storer et al. proposed secure data deduplication (SDD) to achieve

secure data storage. And many deduplication methods have been proposed since then [97, 141]. As an efective

way to achieve data security and space eiciency, SDD can be applied to single-server and distributed storage

systems [168]. Furthermore, artiicial intelligence (AI) functionalities have shifted from cloud servers to edge

devices, which can potentially improve security and privacy in the ECDriven-IoT [12].

7.2.3 Combining the ECDriven-IoT With Blockchain Technologies. Blockchain is viewed as a distributed tamper-

resistant database that can be maintained, shared, replicated, and synchronized by multiple participants in the

peer-to-peer (P2P) network [191]. Considering the security and privacy problems in edge computing, blockchain

can be a potential technology to establish a secure, trusted, and decentralized intelligent system in ECDriven-

IoT [75, 84, 187]. When applying blockchain in edge computing and IoT, it can ensure a reliable tracking of

ECDriven-IoT data transmission and eliminate the requirement for a central trusted intermediary between the

communicating IoT edge devices [127]. Aiming to improve authentication eiciency, Guo et al. [63] combined

edge computing with blockchain to build a distributed and trusted authentication system. This system can

guarantee trusted authentication and reliable traceability in edge-computing nodes. It consists of both a physical

network layer, a blockchain network layer, and a blockchain edge layer to support edge computing. As for the use

of blockchain, the system can prevent network connections from being attacked. Zhao et al. proposed a lexible

and conigurable blockchain architecture that provides a mutual authentication protocol and secure consensus,

making it suitable for the ECDriven-IoT. In this architecture, user-deined sensitive data will be encrypted before
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Table 6. Solutions and countermeasures of security and privacy threats.

Solutions Layer Advantages Disadvantages

Cryptographic Schemes Communication Layer Highly secure
Battery power, computing capability

storage memory

Secure Data Aggregation,

Deduplication, Analysis
Data Layer

Protect data security

and privacy

Consume power, render sensitive

data to intruders network bandwidth

Combine with Blockchain Architecture Layer
Trusted, reliable,

and secure

More complicated system

more computing capability

Intrusion Detection System Communication Layer Mitigate security threats Resource consumption

storage. Besides, the smart contract is adopted to achieve conditional access, which can protect blockchain data

and transactions [198]. In the ECDriven-IoT, amounts of data is shared among edge nodes. But owing to the

lack of trust, data sharing is hard to complete, and it is diicult to overcome the computation limitations at the

edge. Xu et al. developed a blockchain-based big-data-sharing framework to support various applications across

resource-limited edge nodes with a low-computation-complexity consensus mechanism. This framework can be

applied to edge devices with low computation and provide security and privacy protection [187]. Furthermore,

Kang et al. proposed to utilize consortium blockchain to establish a secure and distributed vehicular blockchain

system for data management and storage by deploying smart contracts [84].

7.2.4 Trusted Execution Environment. With the emergence of the ECDriven-IoT, edge devices can process large

data streams. However, this process exposes the data to a sophisticated vulnerable attack environment at the

edge. The trusted execution environment (TEE) can isolate data and their computations to shield them from

edge attacks. Guan et al. [62] proposed a system shielding legacy applications from untrusted operating systems

by constructing a trusted execution environment for security-critical applications. Thus, edge applications can

execute in these environments to prevent data from attacks. To optimize data plane performance when achieving

the TEE, Heejin et al. advocated a stream analytics engine called StreamBox-TZ to ofer strong data security,

veriiable results, and good performance, thus making eicient data analytics in the edge possible [131].

7.2.5 Intrusion Detection System. The intrusion detection system (IDS) mainly focuses on detecting attacks [164,

166]. However, except for monitoring the network’s operations and links, the IDS can mitigate security threats

and report suspicious activities to make the system more stable and secure. Furthermore, the IDS can detect

routing attacks and Black Hole attacks [173]. Hosse [74] presented a new distributed and lightweight IDS based

on an artiicial immune system (AIS). This system consists of the cloud, fog, and edge layers, making it suitable

for edge computing. Wang et al. proposed an IDS architecture for the ECDriven-IoT, which integrates a trust

evaluation mechanism and service template with balanced dynamics [180]. This trust evaluation mechanism can

strengthen the system’s security.

7.2.6 Other Solutions. Tab. 6 shows the advantages and disadvantages of these solutions. As there are many kinds

of attacks on security and privacy, these solutions are various to make ECDriven-IoT as secure as possible. Beside

aforementioned solutions, policy-based mechanisms [117], secure irmware update [117], and reliable routing

protocols [102] also play a very important role in making the system secure. As for the security of data, many

solutions have been proposed in academia, such as de-patterning data transmissions [197], decentralization [197],

and authorization [101]. In many applications, these solutions can be combined with other solutions to work

together. Although there have been many solutions, security and privacy in ECDriven-IoT remain a big challenge

in the present.
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8 APPLICATIONS

The ECDriven-IoT is suitable for many applications. This section will explain how it works and how to satisfy the

requirements in these application scenes. The ECDriven-IoT plays a major role in responsive and latency-sensitive

IoT applications.

8.1 Smart Homes and Smart Cities

One of the pioneering applications of IoT technology is in home automation and consumer electronics [145].

Shi et al. introduced some of the challenges and application prospects in smart life [162]. Fig. 8 shows some

typical application scenarios of the ECDriven-IoT. More and more applications are beneiting from the advantages

of edge computing, such as smart homes, smart vehicles, smart medical systems, and intelligent monitoring.

Fig. 8. Application scenarios of edge computing driven

IoT.

The smart home is a popular IoT application scenario,

and some established market products are widely acclaimed.

These products range from simple thermostat sensors to

more sophisticated automation systems, like smart meter-

ing, smart heating and lighting, smart cleaning services, and

smart home entertainment systems. However, the smart

home is not simply adding IoT communication modules

to traditional home products. In addition to smart devices

communicating with each other, IoT data such as room en-

vironment data is also essential for smart homes. Therefore,

the deployment of a large number of inexpensive sensors

and controllers is needed as part of a collaborative efort in-

house. The large amount of data generated by these sensors

will be transmitted and used by other IoT devices. Consider-

ing data transmission bandwidth pressure and privacy data

protection requirements, edge computing can be an ideal

choice for building smart homes [174]. Furthermore, edge

computing will bring other features such as easy installation, relocation, privacy preservation, and lexibility [148].

Smart homes can be extended to smart communities and even smart cities, and are expected to become an

indispensable part of human life. ECDriven-IoT systems can also serve as the ideal architecture for smart cities.

According to the data growth trend of a city today, the data will grow exponentially in the future. These data are

generated by public safety, health, utilities, and transportation. Processing the data at the network edge is more

eicient than building a cloud data center. Next, considering the sudden events and public safety in the city, edge

computing can save data transmission time and reduce response latency. This beneit is critical for applications

that require predictability and low latency. In addition, edge computing can make decisions and diagnoses from

the network edge, where events occur faster than in the cloud center. Finally, the natural advantage of edge

computing is location awareness. Some geo-based applications like transportation can collect and analyze data to

avoid the dilemma of transmission to the cloud [171].

8.2 Smart Healthcare

The ECDriven-IoT can make a big diference in smart healthcare, where IoT is widely adopted. Wearable low-

power IoT medical sensors for monitoring health-related data and tracking records are now popular in public

healthcare facilities [73]. Embedding sensors and actuators on patients are to help doctors monitor patients’

health status and provide feedback to healthcare providers. However, performance without edge computing is

not good enough in terms of latency and accuracy [172]. Remote patient monitoring is a typical use case in smart
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healthcare. It provides convenience for doctors and patients far away from medical facilities. The records of

patients have to be processed immediately and securely. Thus, transmission latency can be the bottleneck that

prevents smart healthcare from being applied widely. With the potential beneits, the role of edge computing

in the health and social assistance industries becomes more evident. Much research on the employment of the

ECDriven-IoT in health care has been investigated. In [176], a remote patient health monitoring scheme was

proposed in smart homes via the concept of edge computing at the gateways. This monitoring system adopts

advanced techniques at the edge of the network. These techniques involve data mining, distributed storage, and

notiication services. Rahmani et al. introduced the smart gateway concept and explored its application in remote

health monitoring [143]. The medical data generated in edge nodes will be collected and processed to update

the monitoring system’s parameters. Due to the geo-distributed nature of the network, the system can provide

real-time notiication for patients and privacy in data gathering.

Gia et al. introduced a medical application of the ECDriven-IoT [60]. The system utilizes edge computing on

the intelligent gateway to enhance the health monitoring system. The speciic measures are data mining at the

network edge, and distributed storage to enhance notiication services. Stanciu et al. used blockchain technology

as a starting point and integrated blockchain technology into an edge computing platform to implement a

distributed control system [167].

8.3 Mobile VR and AR

The progress of smartphones and smart glasses has increased the popularity of augmented reality applica-

tions [192]. With the development of virtual reality (VR) and augmented reality (AR), humans can interact more

naturally with the virtual world through the data that are collected by IoT devices [156]. With IoT sensors, AR

technologies can extend the real world to the virtual world [18]. In the initial step, cloud computing provides the

demands of computational power, which can satisfy these requirements in latency and quality. However, VR and

AR can be applied to more scenes, such as tourism, smart transportation networks, and robotic-assisted surgeries.

Cloud computing is no longer used to satisfy the requirements in latency and throughout the network, as these

scenes are strict in latency, which may decrease user satisfaction. For low-latency oloading services in VR and

AR, edge computing can efectively reduce the latency in combining these processed data with physical reality.

Edge computing can also migrate computing tasks from mobile devices to edge nodes to increase the compu-

tational capacity of VR devices, save battery life, and reduce latency at the same time [35]. Additionally, edge

computing can be connected with the cloud for stronger computing capabilities when needed [19].

Zao et al. proposed an architecture that combines edge nodes and cloud data centers to leverage the augmented

brain-computer interface [196]. The main beneit of this architecture is the low latency and real-time interaction,

which can provide a more comfortable playing experience in VR and AR application scenes.

8.4 Industry Application

The Industry Internet of Things (IIoT) is known as Industry 4.0, which means the new era in the industry area [95].

IIoT incorporates numerous advanced communication and automation technologies, AI, and big data analysis

to improve intelligence and connectivity in industry [188]. Today, new intelligent technologies are applied to

accelerate the innovation and transformation of the factory workforce. IoT can collect data in extreme scenes

to protect workers from danger. Furthermore, these collected data can be stored and analyzed to make better

decisions.

IIoT provides many beneits, such as improving operational eiciency, connectivity, and scalability, and saving

the time cost for manufacturing processes [133]. Combined with many smart machines, IIoT aims for higher

accuracy, greater eiciency, and more constant working capabilities than humans. As a complement to IoT, edge

computing can play a very important role in IIoT. For instance, real-time edge analysis and enhanced edge security
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are the two main ECDriven-IoT application scenes. Additionally, edge computing can provide an opportunity to

address shortcomings in the IIoT domain [123].

Edge computing can optimize the performance of traditional IIoT. Instead of transmitting the sensor data to the

cloud directly, edge computing can process those data in edge nodes to reduce the data volume and bandwidth.

Processing sensor data in the edge nodes can also reduce the latency and preserve the storage in the cloud,

improving the service quality of many applications, including video streaming [85]. Harper et al. proposed a

fog-computing-based communication architecture that will substantially minimize the energy consumption of

the IoT nodes [68]. Edge computational capabilities are further used to predict future data measurements and

reduce the throughput from IoT devices to control units.

8.5 System Evolution

Sarkar et al. showed the parameters and features of edge computing by mathematical calculations [155]. Their

research analyzed and compared the power consumption, service delay, carbon dioxide emissions, and cost of edge

computing and cloud computing. Villari et al. introduced a new concept, osmotic computing [177], an emerging

calculation paradigm similar to edge computing. It also supports data processing at the network edge while

providing IoT services. The author also discussed some of its characteristics and future directions. Morabito et al.

showed how to enhance edge computing with lightweight virtualization in the IoT [115].

Dastjerdi et al. presented an introduction to the concepts and characteristics of fog computing. They also

analyzed what a complete edge computing software system looks like, including the system design patterns,

API, and service management [42]. In their research, Gupta et al. started from a software perspective and irst

proposed several challenges to be solved in implementing the edge and IoT paradigms [65]. The most critical

challenge is resource management technology. In other words, how to determine which application modules are

deployed in the edge device to minimize latency and ensure adequate throughput. At the same time, network

congestion and energy costs also need to be considered in the future.

9 LESSONS LEARNED, OPEN CHALLENGES, AND FUTURE DIRECTIONS

9.1 Key Lessons Learned

We have illustrated many challenges ECDriven-IoT has met when applied to reality. In contrast, we also can

discover many opportunities and advantages that ECDriven-IoT will eventually bring. Edge computing and IoT,

when they are deployed independently, both have many shortcomings, which have prevented them from being

widely used and developed. But when combined, they can help each other in bandwidth, power consumption,

latency, security, and so on. We draw some lessons from our extensive survey of related work, including ECDriven-

IoT architecture and standards, eicient communication, application, and security.

9.1.1 Unified Architecture and Standard. Since edge and IoT devices are heterogeneous from bottom hardware to

top system design, current related research is fragmented and lacks a uniied measurement for proposed ECDriven-

IoT solutions. For example, multiple embedded operating systems are designed to abstract heterogeneous IoT and

edge devices, but ECDriven-IoT applications cannot migrate directly between these operating systems because

they have diferent exposed interfaces. Establishing standards is very important for the development of a ield,

and the same is true for ECDriven-IoT. ECDriven-IoT should have a uniied architecture or interface standard

to facilitate its deployment and usage. Otherwise, the beneits of ECDriven-IoT will be largely hindered by the

heterogeneous nature of IoT and edge computing. Though some existing studies have provided architecture

design schemes of ECDriven-IoT, few of them are committed to pushing forward standards establishment in this

area.
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9.1.2 Eficient Communication and Computation Coordination. The communication latency of ECDriven-IoT

applications can be further reduced owing to the decentralized fabric of edge computing. However, when it comes

to diferent IoT applications, diferent communication protocols, and network conditions, how to ensure that

the communication between IoT devices and edge nodes is eicient is a critical concern. Speciically, how to

coordinate edge nodes to complete the computing work of IoT devices is a key optimization problem. Besides,

diverse communication protocols in the IoT area make the encoding-decoding in edge nodes more complex.

One solution for edge nodes to handle various protocols is supporting several communication protocols, but

this solution is relatively costly. Another solution is the newly emerged cross-technology communication (CTC)

technologies, which enable two or more diferent communication protocols to communicate with each other.

Althoughmany CTC technologies have been explored tomake communicationmore eicient, they are only limited

to two or three technologies [64]. Thus, how to achieve eicient communication still need more exploration.

9.1.3 Practical Security and Privacy Solutions. Security and privacy issues of ECDriven-IoT are more complicated

due to the heterogeneous and distributed architecture. Current solutions cover multiple layers of ECDriven-

IoT, i.e., architecture layer, communication layer, and data layer. But these solutions are far from satisfactory

because of high computation complexity or speciic hardware demands. For example, blockchain-based solutions

for architecture security bring extra communication overheads and storage costs; TEE-based solutions for

computation security rely on trusted hardware. ECDriven-IoT should focus on exploring lightweight and the

common security and privacy solutions, which are practical and eicient even in resource-constrained devices.

9.1.4 Diferent Designs for Diferent Application Scenes. The design of ECDriven-IoT cannot be illustrated simply

by a single model, and the system requirements vary for diferent application scenarios. The ECDriven-IoT system

design should be lexibly adapted to make it more eicient and suitable for various ECDriven-IoT applications.

For example, we may be more concerned with the computational and communication complexity of real-time

applications (e.g., smart health, autonomous driving, VR) but more concerned with the power consumption of

long-life protection applications (e.g., ield environmental monitoring). It is a trade-of in the design of ECDriven-

IoT systems. Therefore, when designing an ECDriven-IoT system, we should fully consider what metrics the

application really cares about and give a suitable application-speciic solution.

9.2 Challenges and Future Directions

There are many challenges to be solved in edge computing, especially related to IoT. In this section, we will

discuss some of the open research challenges and potential future work in the ECDriven-IoT.

9.2.1 Heterogeneous Platforms in Edge Computing and IoT. In a traditional cloud computing data center, users do

not need to know how the program works or care about the underlying hardware architecture. However, in the

ECDriven-IoT, edge devices and networks need to take on computing tasks while considering heterogeneous

hardware platforms. The heterogeneous nature of ECDriven-IoT leads to a signiicant increase in programming

workload for developers. The future development of IoT relies on edge computing, and the application scenarios

are rich and colorful. Efectively solving the diiculties brought by heterogeneous platforms will make more

developers invest in such work.

How to discover resources and services in a distributed computing environment is an area to be explored. In

order to make full use of the edge devices of the network, it is necessary to establish a discovery mechanism

to ind the appropriate nodes that can be deployed in a distributed manner. Because of the sheer number of

devices available, these mechanisms cannot rely on manuals. In addition, various heterogeneous devices are

needed to meet the latest computing needs, such as large-scale machine learning tasks. These mechanisms must

seamlessly integrate computational worklows at diferent levels without increasing latency or compromising the

user experience. The original cloud-based methods are no longer applicable in edge computing.
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9.2.2 Task Allocation in the ECDriven-IoT. The biggest challenge for the ECDriven-IoT is how to deploy large-

scale computing and storage capabilities dynamically [20]. The appropriate deployment will make device sides

work together eiciently and seamlessly. Evolving distributed computing has spawned many technologies that

are used to facilitate the task of partitioning in multiple geographies. However, on the edge side, partitioned

computing not only poses the challenge of eicient partitioning but also encounters bottlenecks in automatic

allocation without the capacity or location of edge nodes. Therefore, a new scheduling strategy is needed to

assign tasks to edge nodes. It is a prominent issue that must be addressed for large-scale deployments of IoT edge

devices and networks and will afect the scale of the development of the ECDriven-IoT.

9.2.3 Data Abstraction in Edge Computing and IoT. Although data-generation devices in the IoT do not need to

send generated data to the data center frequently, the edge node needs some required data to perform analysis

work. Data abstraction refers to these data pre-processing algorithms and solutions, including noise cancellation,

data classiication, and computing. For example, gateways need to process some events such as noise cancellation.

However, IoT devices are rich and varied, and diferent devices use diferent data formats. It brings the irst

challenge to data abstraction. The second challenge is how to efectively determine the level of data abstraction.

Considering data security issues, the application does not get all the raw data, but only abstracts the parts it is

interested in. If too little of the raw data is iltered, the application will not get the information it needs. However,

keeping too much raw data can cause storage problems. In addition, the data generated by edge devices are often

unreliable due to external interference from sensors. Therefore, extracting accurate information from unreliable

raw data is another challenge.

The application needs to control objects to provide a speciic service, such as reading and writing data. The

data abstraction layer combines the presentation of data and corresponding operations and provides a uniied

interface. In addition, inding a universal way of data abstraction is not easy because of the diversity of devices,

diferent ways of presenting data, and diferent corresponding operations.

9.2.4 Edge Nodes Security. The security of the ECDriven-IoT requires end-to-end protection. As the device is

closer to IoT, the diiculties in network edge-side access control and threat protection will increase dramatically.

Edge-side security mainly includes device security, network security, data security, and application security. In

addition, the conidentiality of critical data and the protection of personal privacy data are vital areas of IoT

security [149].

Several issues must be addressed before end devices (e.g., switches, base stations) are used as edge nodes for

shared access. First, risks associated with users and owners of edge devices need to be deined. Second, when the

device is used as an edge computing node, the original functionality of the device cannot be compromised. Third,

multiple users on edge nodes need security as their primary concern. Fourth, the minimum service level needs to

be guaranteed to the users of edge nodes. Finally, workloads, computing power, data locations and migration,

maintenance costs, and energy consumption need to establish an appropriate pricing model.

9.2.5 Development Tools for Edge Computing Driven IoT. As the number of edge nodes supporting general-

purpose computing continues to increase, the demand for development frameworks and toolkits will continue to

grow. Edge analysis is diferent from existing work. Since edge analysis is implemented in user-driven applications,

existing tools may not be suitable for expressing edge analysis worklows. The programming model needs to

use edge nodes to support the parallelism of tasks and perform calculations on multiple levels of hardware. At

the same time, programming languages need to consider the hardware heterogeneity in the worklow and the

computing power of various resources. So, ECDriven-IoT is more complicated than existing cloud computing

models.
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10 CONCLUSION

In this paper, we present a comprehensive survey of the ECDriven-IoT, including supporting technologies and

research challenges in this ield. We irstly categorize existing studies to help researchers ind innovative research

topics. We then propose some open issues worthy of study and contribute to the development of the industry.

Currently, the research on the ECDriven-IoT topic is still highly fragmented, which is not conducive to the

research and development of the ield. Therefore, this survey helps review and summarize existing research work

and promote cross-cooperation in related areas.
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