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Abstract
Federated Learning (FL) is a distributed 

machine learning paradigm that trains models 
across multiple devices without exchanging users’ 
data, thereby providing stronger data privacy 
guarantees. However, some research reveals that 
FL may face security and privacy issues, such 
as single point of failure, model poisoning, and 
parameter privacy disclosure. Recently, the field 
of combining blockchain and FL has a trend to 
become a hot research topic. More and more 
researchers attempt to use blockchain to decen-
tralize and secure FL frameworks. To further 
understand recent advances in blockchain-based 
FL (BFL) systems, this article aims to provide a 
systematic survey to deconstruct BFL systems. 
We propose a taxonomy of BFL systems follow-
ing the lifecycle of FL tasks and divide them into 
three layers, i.e., the blockchain layer, the training 
layer, and the aggregation layer. We review and 
summarize representative work in each layer. We 
also discuss several open challenges for designing 
more secure and efficient BFL systems.

Introduction
Federated Learning (FL), proposed by Google in 
2016, has been recognized as a promising tech-
nique to address privacy concerns in machine 
learning algorithms. One classic case is that Goo-
gle uses the FL technique to help Gboard learn 
new words and phrases without collecting the text 
users speak or type. To enable the distributed train-
ing paradigm, FL distributes models across multiple 
users’ devices (i.e., workers) and trains with their 
local data. Workers transfer their updated model 
parameters to the parameter server (i.e., aggrega-
tor) for aggregating the global model. Therefore, 
the global model can be updated without knowing 
local training data. Since workers do not expose 
their local data during training, people once con-
sidered that the FL technique could prevent data 
disclosure well. However, there remain some secu-
rity and privacy issues [1] to be addressed:
•	 Data Privacy. Even though workers’ data 

are not exposed directly in the training pro-
cess, recent advances show that adversaries 
could reconstruct raw data in light of updat-
ed model parameters.

•	 Model Poisoning. Adversaries could launch 
data poisoning or model poisoning attacks 
to compromise the model performance, 

such as training local models using anom-
alous data and modifying updated model 
parameters.

•	 Centralization. FL systems that rely on cen-
tralized aggregators are vulnerable to sin-
gle-point of failures and DDoS attacks. 
Besides, the system performance is con-
strained by the limited bandwidth and com-
putation powers of the aggregator.

•	 Opaque Incentives. Incentive mechanisms 
are also important in FL systems. They pro-
vide proper rewards to workers who make 
positive contributions to training models. Fair 
incentive mechanisms help raise workers’ 
enthusiasm to participate in FL tasks. But a 
centralized, opaque system might provide 
unfair incentives (e.g., Amazon MTurk [2]).
Moreover, FL systems usually have a strong 

assumption that aggregators are always honest, 
which is not practical in the real world. To avoid 
that system reliability depends only on a single 
node, it is a natural thought to build an FL system 
with a decentralized paradigm for making the sys-
tem more secure and robust.

With the emergence of blockchain technolo-
gies, it is promising to address the aforementioned 
security and privacy issues in FL. Thanks to the 
decentralized architecture of blockchain, block-
chain-based FL (BFL) systems do not need to rely 
on a centralized aggregator but a decentralized 
consensus to aggregate updated model parame-
ters. Specifically, blockchain nodes in BFL systems 
reach a consensus on their local training results. 
Under the premise that the majority of nodes 
are honest, such a decentralized aggregation 
paradigm can alleviate malicious attacks, such as 
poisoning attacks, DDoS attacks, and single-point 
of failures. By canceling the centralized aggrega-
tor, BFL systems are more robust and scalable. 
Moreover, the immutability and traceability fea-
tures of blockchain ensure BFL systems record 
all updated model parameters during the train-
ing process faithfully, and guarantee the recorded 
parameters are not tampered with and the training 
process is auditable. In addition, smart contracts 
running on top of blockchain can provide work-
ers with transparent, customized, and undeniable 
incentive mechanisms. A fair and proper incentive 
mechanism can motivate workers to participate in 
the BFL systems well.

Benefiting from the superiority of blockchain, 
more and more researchers show great interest in 
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the field of combining blockchain and FL. How-
ever, research in this field is still in its infancy. Up 
to now, there only exists one related survey inves-
tigating the combination of blockchain and FL 
in edge computing [3], which mainly focuses on 
classifying recent advances from issues and appli-
cation aspects, e.g., data sharing, content caching, 
and crowdsensing. A systematic survey toward 
deconstructing the design components of exist-
ing BFL systems is still missing, which can help 
researchers understand how to design a practical 
BFL system. To fill this gap, we conduct a brief 
but thorough survey by identifying and classifying 
the most high-quality literature, which is closely 
related to BFL systems.

Taxonomy
In this article, we propose a taxonomy of BFL 
systems following the lifecycle of an FL task, as 
shown in Fig. 1. We deconstruct BFL systems into 
three layers from bottom to up: blockchain layer, 
training layer, and aggregation layer, correspond-
ing to the three phases in an FL task lifecycle.

In the publish phase, a requester publishes its 
FL task via a smart contract to the blockchain. The 
FL task contract generally contains information 
like an initial task model, a reward scheme, and 
training criteria. Since the publication of an FL 
task contract should be confirmed by blockchain 
nodes, we have to design a suitable consensus 
protocol according to different system scales and 
permission control strategies. When formulating 
FL tasks in smart contracts, requesters need to 
devise proper incentive mechanisms for distribut-
ing task rewards fairly and transparently. After the 
global model is aggregated and checked, work-
ers will be rewarded automatically according to 
the incentive mechanism predefined in the smart 
contract. Thus, we assign the design of consensus 
protocol and incentive mechanism to the block-
chain layer.

In the execute phase, workers receive pub-
lished FL tasks from the blockchain by triggering 
corresponding functions in the smart contract 
and train local models using their data. During 
training models, workers should protect their data 
privacy from leaking through model parameters 
[1]. Therefore, BFL systems should introduce data 
privacy protection schemes for workers in the 
training layer.

In the aggregate phase, workers submit their 
updated model parameters to the aggregator or 
blockchain nodes to aggregate the global model, 
where the aggregation architecture and aggregation 
rule should be considered. The aggregation archi-
tecture determines the way to gather local model 
parameters. Different architectures have different 
communication complexity, which further impacts 
system scalability. And the aggregation rule helps 
figure out anomalous parameters and improve the 
quality of global models. We include these two criti-
cal components in the aggregation layer.

In the rest of this article, we will look back at 
the existing enabling techniques for BFL systems 
in the proposed three layers, respectively.

Blockchain Layer
In the blockchain layer, we focus on the design of 
consensus protocols and incentive mechanisms 
for BFL systems.

Consensus Protocol
The consensus protocol is one of the most import-
ant components of a blockchain. Blockchain 
nodes should reach a consensus on all blockchain 
data to prevent Byzantine nodes from doing evil. 
Since different consensus protocols have different 
scalability, safety, and convergence rate, we have 
to design suitable consensus protocols accord-
ing to the requirement of BFL systems. There are 
mainly three types of consensus protocols applied 
in existing BFL systems: probabilistic consensus, 
deterministic consensus, and hybrid consensus, 
which are summarized in Table 1.

1) Probabilistic Consensus: The probabilistic 
consensus is like a lottery game, where everyone 
has an equal probability of winning this game. 
Blockchain nodes (i.e., miners) who win the game 
can mine a new block successfully. Proof-of-work 
(PoW) [4] is one of the most popular probabilistic 
consensus adopted in Bitcoin and Ethereum. In 
PoW, miners use the hash function to generate 
random outputs constantly. The miner who first 
generates an output value smaller than the mining 
difficulty value obtains the right to mine a new 
block. Due to the randomness of the hash func-
tion, miners cannot construct a dedicated input for 
the targeted output value, which guarantees the 
fairness of PoW. However, PoW wastes too many 
resources in hash calculation. Thus, proof-of-stake 
(PoS) [5], [6] was proposed to relieve this phe-
nomenon. PoS evolves from PoW but additionally 
brings the concept of stake age to relax the mining 
difficulty, which helps accelerate the mining pro-
cess and reduce resource consumption.

Some BFL systems proposed proof-of-useful-
work (PoUW) consensus protocols to replace 
“useless” hash calculation in PoW/PoS. For exam-
ple, FedCoin [7] designed the proof-of-Shapley 
(PoSap) consensus, which makes miners compute 

FIGURE 1. Taxonomy of BFL systems corresponding to the FL task lifecycle.

With the emergence of blockchain technologies, it is promising to address the aforementioned security 
and privacy issues in FL.
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Shapley values to assess workers’ contribution to 
FL tasks while satisfying the requirement of block-
chain consensus. By-toChain [8] and BFDS [9] 
combine the training and consensus process, and 
workers having the highest training model accu-
racy will obtain the right to generate new blocks. 
However, the security of these newly proposed 
PoUW consensus protocols has not been fully 
proven.

Probabilistic consensus protocols are highly 
scalable due to their relatively low communi-
cation complexity and are usually adopted in 
large-scale public blockchains. But due to the low 
convergence rate, they cannot reach a consensus 
quickly.

2) Deterministic Consensus: Deterministic 
consensus protocols can reach a consensus in 
fixed steps, so they have higher throughput than 
probabilistic consensus protocols. Practical Byz-
antine fault tolerance (PBFT) is a representative 
deterministic consensus protocol [10], [11]. PBFT 
usually takes four steps to achieve consensus, i.e., 
pre-prepare, prepare, commit, and reply. During 
this process, blockchain nodes need to exchange 
messages with each other, so the communica-
tion complexity of PBFT achieves O(n2), which 
is unbearable when the system scale becomes 
large. HotStuff [12] is an optimized variant of 
PBFT, which leverages the threshold signature 
technique to realize a linear communication com-
plexity O(n). Moreover, PIRATE [12] makes the 
HotStuff protocol pipelined to further enhance 
the consensus efficiency. Deterministic consen-
sus protocols are more suitable for permissioned 
blockchains, where blockchain nodes must be 
authorized before joining the system.

3) Hybrid Consensus: The hybrid consensus 
combines the above two basic consensus types 
to make the trade-off between scalability and 
convergence rate. In general, the workflow of 
hybrid consensus protocols can be illustrated 
in two steps: First, utilize probabilistic consen-
sus protocols to select c blockchain nodes to 
form the consensus committee. Second, apply 
deterministic consensus protocols to achieve 
consensus within the consensus committee. In 
this manner, the hybrid consensus protocols 
can support a large-scale blockchain system 

while improving the convergence rate com-
pared to probabilistic consensus protocols. A 
classic hybrid consensus protocol is Algorand 
[13], [14]. It first utilizes the verifiable random 
function (VRF) to select a subset of blockchain 
nodes as the committee members in a non-in-
teractive way and then uses a BFT-like protocol 
to achieve consensus within the committee. 
Biscotti [15] proposed a hybrid consensus pro-
tocol similar to Algorand, proof-of-federation 
(PoF), which leverages workers’ contribution 
instead of stake as the input of VRF to select 
committee members.

Incentive Mechanism
Incentive mechanisms can motivate workers to 
engage in the FL tasks actively. A fair incentive 
mechanism should reward honest and high-quality 
workers, and punish or give no reward to mali-
cious or low-quality workers. For a traditional 
centralized FL platform, the central server may 
provide an opaque, biased incentive mechanism 
[2]. In comparison, the blockchain smart contract 
provides a transparent and tamper-proof platform 
to customize incentive mechanisms. Workers 
can audit the incentive mechanism scheme 
formulated in the smart contract and verify its exe-
cution results. Most existing BFL systems adopt 
contribution-based or reputation-based reward 
and punishment mechanisms as their incentive 
mechanisms.

In BFLC [11], the committee members vali-
date the local updates by treating their local data 
as a validation set, and the validation accuracy 
becomes the score. After the aggregation of each 
round, the committee members distribute rewards 
to the corresponding workers based on scores of 
their submitted updates. As a result, frequently 
providing updates could earn more rewards, and 
the constantly updated global model will attract 
more workers to participate. To fairly reward data 
holders (i.e., workers), BytoChain [8] uses accu-
racy increment to quantify the contribution of 
data holders. The number of rewards is directly 
proportional to the increase in accuracy, where 
the accuracy is tamper-proof on the blockchain, 
and all workers can easily verify its increment. 
Therefore, workers will lose the motivation to 

Ref. Consensus Blockchain Safety Scalability Comm. Comp. Incentive Mechanism

LearningChain [4]

Probabilistic 
Consensus

PoW Ethereum n ≥ 2f + 1 High O(n) -

SecCL [5] PoW/PoS Ethereum n ≥ 2f + 1 High O(n) -

SFL [6] PoW/PoS Ethereum n ≥ 2f + 1 High O(n) -

FedCoin [7] PoSap - n ≥ 2f + 1 High O(n) Shapley Value

BytoChain [8] PoA - n ≥ 2f + 1 High O(n) Accuracy Increment

BFDS [9] PoQ - n ≥ 2f + 1 High O(n) -

RFL [10]
Deterministic 
Consensus

PBFT Hyperledger Fabric n ≥ 3f + 1 Low O(n2) -

BFLC [11] PBFT FISCO BCOS n ≥ 3f + 1 Low O(n2) Contribution-based

PIRATE [12] HotStuff - n ≥ 3f + 1 Medium O(n) -

PBFL [13]

Hybrid Consensus

Algorand - n ≥ 3f + 1 Medium O(n • c + c2) Reputation-based

DeepChain [14] Algorand Corda n ≥ 3f + 1 Medium O(n • c + c2) Contribution-based

Biscotti [15] PoF - n ≥ 3f + 1 Medium O(n • c + c2) -

TABLE 1. Summary of BFL systems in the blockchain layer (Comm. Comp.=Communication Complexity; 
n = # of consensus nodes; f = # of Byzantine nodes; c = # of committee members).
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launch the free-riding attack because the accu-
racy increments of their useless models are close 
to zero, so they can no longer get rewards.

Similarly, PBFL [13] and DeepChain [14] 
reward workers based on their reputation/con-
tributions. By combining Multi-Krum and the 
reputation-based scheme, PBFL can reward 
workers properly and prevent poisoning attacks. 
Besides these intuitive contribution-based distri-
bution schemes, we have the chance to further 
refine the reward distribution through game the-
ory, mathematical optimization methods, etc. For 
example, FedCoin [7] adopts Shapley value in 
the game theory to calculate workers’ contribu-
tions fairly and quantitatively, thereby incentivizing 
workers to contribute their efforts.

Training Layer
Adversaries may infer the original data from the 
updated model parameters, which leaks workers’ 
training data privacy [1]. Therefore, we focus on 
protecting workers’ model parameter privacy in 
the training layer.

Model Parameter Privacy
Several attacks could infer the training data refer-
ring to the updated model parameters, such as 
membership inference, model inversion, and 
GAN reconstruction [1]. We divide the parameter 
privacy-preserving schemes used in existing BFL 
systems into two categories: noise perturbation 
and private aggregation, which are summarized in 
Table 2.

1) Noise Perturbation: The key idea of noise 
perturbation-based schemes is to add private 
noise to the local model parameters before send-
ing them to others. Due to noise perturbation, 
attackers cannot infer the original data, even if 
they intercept local model parameters. A com-
mon perturbation technique is the differential 
privacy (DP) [1], which ensures that any response 
to queries is essentially equally likely to hap-
pen, regardless of whether a particular record 
is contained in the dataset. The “essentially” is 
measured by the parameter ε, and a smaller value 
indicates better privacy. If one function satisfies 
the above property, we can say it achieves ε-DP. 
However, the traditional DP technique needs a 
trusted third party to collect original data and add 
noise to the computation results. Since the global 
model is built by multiple parties, the local DP 
(LDP) technique is more suitable for BFL systems 
[6], [9], [13]. The updated model parameters are 
perturbed locally before release, so LDP does not 
reveal original data to any third party.

In SFL [6], workers use the Gaussian noise 
function to add noise to their local model updates 
before submitting them to the blockchain. This 
function satisfies the requirement of (ε, δ)-LDP, 
where δ is the probability that plain ε-LDP is 
broken. Workers use LDP to defend against 
membership inference attacks. Similarly, BFDS 
[9] and PBFL [13] add the Laplace noise to per-
turb local model parameters. However, noise 
perturbation-based schemes may decrease the 
performance of models, and it is hard to make the 
trade-off between privacy and accuracy, by tuning 
the parameter ε.

2) Private Aggregation: Another type of 
parameter privacy-preserving scheme utilizes 
cryptographic tools to implement private aggre-
gation. DeepChain [14] applies the threshold 
Paillier algorithm that provides additive homomor-
phic property to encrypt gradients. It assumes a 
trusted setup is needed, and the secret key cannot 
leak without at least t of n workers. Workers can 
aggregate the encrypted model parameters from 
others due to the additive homomorphic property 
of cipher text. However, DeepChain cannot apply 
aggregation rules because the encrypted model 
parameters only support addition operations.

To enable robust aggregation rules in pri-
vate aggregation, Biscotti [15] uses both noise 
perturbation and private aggregation methods. 
First, it masks the workers’ model parameters 
using LDP and leverages the verification com-
mittee to validate these masked parameters. If 
the parameters pass the Multi-Krum verifica-
tion, the committee will sign on the unmasked 
parameters. Second, it uses Shamir secret shar-
ing, an additively homomorphic encryption 
scheme, for private aggregation. Since anom-
alous model updates are excluded in the first 
step, Biscotti can ensure the quality of the 
aggregated global model. Even though private 
aggregation can well protect parameter privacy 
and does not sacrifice model performance, 
these cryptographic methods are usually com-
putation-intensive and unpractical.

Aggregation Layer
After workers submit their updated model param-
eters to the network, these parameters should 
be checked and aggregated. Therefore, in the 
aggregation layer, we focus on the design of 
aggregation architectures and aggregation rules.

Aggregation Architecture
The aggregation architectures of existing BFL sys-
tems contain three basic types: Parameter Server 
(PS), All-Reduce, and Gossip, which are shown in 
Fig. 2 and summarized in Table 3.

1) Parameter Server Architecture: The PS 
architecture is often adopted in the central aggre-
gator-existed BFL systems. In this architecture, 
blockchain does not participate in the model 
aggregation but is taken as a trusted distributed 
ledger to record, transfer, and audit the updated 
model parameters or workers’ behaviors. The PS 
architecture implicitly assumes that the central 
aggregator (i.e., parameter server) is honest, so 
it cannot prevent attacks from the aggregator. As 
shown in Fig. 2, we can see that there are three 
roles in the PS architecture: central aggrega-
tor, workers, and blockchain nodes. The central 

Ref. Parameter Privacy-preserving Scheme

LearningChain [4]

Noise Perturbation

LDP

Biscotti [15] LDP

PBFL [13] LDP

SFL [6] LDP

BFDS [9] LDP

DeepChain [14]
Private Aggregation

Threshold Paillier

Biscotti [15] Shamir Secrets Sharing

TABLE 2. Summary of BFL systems in the training layer.
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aggregator is a cloud server responsible for aggre-
gating local models obtained from the blockchain. 
Workers train sub-models using their local data-
sets and store the updated model parameters 
on the blockchain. Blockchain nodes receive the 
local model parameters from workers, pack them 
as blockchain data, and synchronize them among 
all blockchain nodes. Blockchain nodes keep the 
consistency of blockchain data across the whole 
network by consensus algorithms. The blockchain 
serves as a service to provide a transparent, trace-
able, unforgeable intermediary to help exchange 
information between the aggregator and workers 
faithfully.

In SFL [6], the central aggregator publishes 
the FL task as a smart contract, which includes 
the initial model, encrypted testing data, the 
training criteria, etc. Workers download the 
initial model and train local models with their 
datasets. The updated model parameters will 
be submitted to the blockchain and evalu-
ated using testing data in the smart contract. 
If the model parameters satisfy the criteria, 
i.e., model accuracy, they will be accepted by 
the central aggregator for further aggregation. 
The encrypted testing data stored in the smart 
contract will be revealed after collecting all 
updated local models to prevent testing data 
disclosure. SecCL [5] utilizes the blockchain to 
store received parameters. Workers evaluate 
the parameters recorded in the blockchain and 
send evaluation scores to the aggregator. Only 
those high-score parameters can be used to 
generate the global model.

Apart from utilizing the blockchain to store 
model parameters, some other research uses 
the blockchain to record workers’ reputations 
or contribution [7], [10]. The central aggregator 

will select task candidates or distribute rewards 
according to their reputation or contribution 
recorded in the blockchain. Since model param-
eters are aggregated by the central aggregator, 
the PS architecture has a high model consistency. 
However, the scalability of PS architecture is lim-
ited to the bandwidth and computing capability 
of the central aggregator. And the PS architecture 
does not make full use of the distributed advan-
tages of the blockchain.

2) All-Reduce Architecture: Compared to 
the PS architecture, the All-Reduce architec-
ture-based BFL systems are fully decentralized 
and have higher scalability. Each node is equal 
in this architecture. Specifically, a node can 
be the worker in the model training stage, the 
aggregator in the model aggregation stage, and 
the blockchain node in the consensus stage. All 
the global results achieve consensus among the 
majority of nodes. As shown in Fig. 2, workers 
first train local models using their data and broad-
cast their updated model parameters to other 
workers through the blockchain. After workers 
receive the model parameters from other work-
ers, they can aggregate the global model locally. 
Thus, we can complete FL tasks without a central 
aggregator by utilizing the All-Reduce architec-
ture. However, this architecture suffers from high 
communication complexity, i.e., O(n2). There-
fore, no existing BFL system directly uses this 
architecture but leverages some hierarchical or 
hybrid All-Reduce architectures to decrease the 
communication complexity, thereby improving 
the system’s scalability.

Hierarchical All-Reduce. For example, PIRATE 
[12] divides workers into several committees and 
achieves consensus hierarchically from intra-com-
mittees to inter-committees. Specifically, workers 
first reach a consensus on the updated model 
parameters inside the committees using HotStuff. 
And then, committees exchange their local-
ly-agreed aggregation results with their neighbors 
using the Ring All-Reduce manner. However, such 

FIGURE 2. Three basic model aggregation architectures of BFL systems.

The blockchain serves as a service to provide a transparent, traceable, unforgeable intermediary to 
help exchange information between the aggregator and workers faithfully.
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an architecture has a potential threat that workers 
in different committees can hardly obtain models 
or records from other committees. If a committee 
as a whole is malicious, it is difficult for other hon-
est committees to detect and resist.

Hybrid All-Reduce. To eliminate the possible 
attacks from malicious committees and have 
moderate communication complexity, several 
research [11], [13], [14], [15] proposed the 
hybrid All-Reduce architecture. Similar to the 
idea of hybrid consensus, the hybrid All-Reduce 
architecture firstly selects a certain number of 
workers to form a committee and then leverages 
the All-Reduce architecture to aggregate the 
global model within the committee. Since the 
updated model parameters are only validated 
and aggregated by a small set of workers, the 
scalability of the hybrid All-Reduce architecture 
is still acceptable.

3) Gossip Architecture: The Gossip architec-
ture-based BFL systems do not need a central 
aggregator, either. The main difference between 
the Gossip architecture and the All-Reduce 
architecture is how the workers are connected: 
workers are fully connected in the All-Reduce 
architecture, while workers only connect with a 
few neighbors in the Gossip architecture. Work-
ers only need to broadcast the updated model 
parameters to their neighbors, which significantly 
reduces communication complexity compared 
to the All-Reduce. However, the Gossip architec-
ture cannot guarantee that each worker has the 
same data view, resulting in inconsistent global 
models. As shown in Fig. 2, workers exchange 
updated model parameters with their neighbors 
and aggregate their final models locally. Since 
their received updated parameters are different, 
their final models are not the same. Thus, they 
will select a nominated worker through proba-
bilistic consensus protocols (e.g., PoW, PoS) to 
aggregate the final model [4]. The final model 
generated by the nominated worker will be 
taken as the global model. We observe that the 
global model is made up of a subset of updated 
parameters because the nominated worker may 
not receive complete updates from all workers. 
Thus, the model consistency of the Gossip archi-
tecture is low.

However, nominating workers via PoW/PoS 
does not guarantee the quality of the global 
model. If the nominated worker is malicious, it 
may generate the global model by choosing the 
wrong parameters. To solve the above issues, 
BytoChain [8] designed the proof-of-accuracy 
(PoA) consensus protocol, which selects the 
worker whose final model has the best perfor-
mance to generate the global model. Similarly, 
BFDS [9] proposed the proof-of-training-quality 
(PoQ) consensus protocol to train the high-quality 
global model.

Putting Section V-A and Section III-A together, 
we can see that the blockchain consensus and 
aggregation architecture are highly correlated 
in the BFL systems. The All-Reduce architecture 
generally corresponds to deterministic consen-
sus, while the Gossip architecture usually adopts 
probabilistic consensus. Different architectures 
have different scalability, convergence speed, and 
model consistency. Therefore, we need to flexibly 
design the system architecture according to the 
needs of specific scenarios.

Aggregation Rule
Aggregation architectures determine the system 
scalability and model consistency, while aggrega-
tion rules determine the model performance and 
security. In BFL systems, adversaries may be dis-
guised as honest workers to disrupt the process of 
FL tasks, i.e., launching data poisoning or model 
poisoning attacks [1]. To defend against these 
attacks, researchers design robust aggregation rules 
in BFL systems to realize Byzantine-robust FL. We 
divide them into two categories: tolerance-based 
and detection-based aggregation rules, which are 
summarized in Table 3.

1) Tolerance-Based Aggregation Rule: There 
are some commonly used tolerance-based aggre-
gation rules to realize robust aggregation, such 
as Krum, Bulyan, trimmed mean, and median [1]. 
These rules have the similar intuitive idea that find-
ing the most “center” models as the global model.

For example, Krum selects the local model 
closest to others as the global model. The dis-
tance between two models is measured by the 
Euclidean distance. However, Krum could be 
compromised by abnormal model parameters. 

Ref. Aggregation Architecture Scalability Model Consistency Aggregation Rule

FedCoin [7]

Parameter Server

Medium High -

SecCL [5] Medium High

Detection-based

PSF

SFL [6] Low High Model Accuracy

RFL [10] Medium High Reputation

PIRATE [12] Hierarchical All-Reduce High High Credit Score

BFLC [11]

Hybrid All-Reduce

Medium Medium Model Accuracy

DeepChain [14] Medium Medium -

Biscotti [15] Medium Medium

Tolerance-based

Multi-Krum

PBFL [13] Medium Medium Multi-Krum

LearningChain [4]

Gossip

High Low l-nearest gradients

BFDS [9] High Low
Detection-based

Model Accuracy

BytoChain [8] High Low AOT&ADT

TABLE 3. Summary of BFL systems in the aggregation layer.
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To make Krum more robust, Multi-Krum was 
proposed [15], [15], which selects multiple local 
models closest to other models, and averages 
these model parameters as the global model. 
Similarly, LearningChain [4] proposed an l-nearest 
gradients aggregation rule, which selects the top  
l closest gradients based on their cosine distances, 
and aggregates the global model using these  
l gradients.

However, all these tolerance-based aggregation 
rules face the same problem: If a Byzantine worker 
obtains the local model parameters of most work-
ers, it can generate fake model parameters to 
launch an attack that arbitrarily alters the global 
model. Therefore, tolerance-based aggregation 
rules seem more of a reactive defense strategy.

2) Detection-Based Aggregation Rule: Com-
pared to tolerance-based aggregation rules, 
detection-based rules are a more active defense 
strategy that validates received local models and 
proactively eliminates anomalous ones. In gen-
eral, detection-based rules measure the quality of 
local models by evaluating the model accuracy on 
testing data and discarding the unqualified local 
models [6], [9], [11].

For example, SecCL [5] proposed the posi-
tional scoring function (PSF) for selecting optimal 
model parameters to update the global model. In 
SecCL, workers will evaluate the updated mod-
els from other workers using their local data and 
send the evaluation scores to the aggregator, who 
selects and aggregates top local models accord-
ing to the received evaluation scores. Therefore, 
SecCL can ensure only the high-quality local 
models can be chosen to update the global 
model. BytoChain [8] considered that selecting 
the local models only by accuracy may cause the 
over-fitting problem, so it proposed two thresh-
olds, the accuracy oscillation threshold (AOT) and 
the accuracy deviation threshold (ADT), which 
can tolerate local models with a certain drop in 
accuracy. Because accuracy oscillations are com-
mon in the FL training, these models may help 
jump out of local optima.

Instead of directly validating the accuracy of 
local models, in PIRATE [12], the committees will 
assign corresponding credit scores for workers by 
considering multiple factors, such as computing 
capability, historical records, and network condi- 
tions. They use the credit scores to reconfigure 
the candidates of FL tasks and weight the received 
model parameters for robust aggregation. That is 
to say, workers whose credit scores are higher will 
contribute more to the global model. Similarly, 
RFL [10] uses the reject on negative influence 
(RONI) scheme and the FoolsGold scheme to 
evaluate the quality of updates, denoted as work-
ers’ reputation.

Due to the decentralized advantage of 
the blockchain, BFL systems can well apply 
detection-based aggregation rules to exclude 
anomalous updates. Combining the validation 
results from other workers, BFL can achieve k-fold 
cross-validation using multiple workers’ local data 
for robust aggregation.

Challenges and Discussion

Challenges

BFL brings a new decentralized paradigm to tra-
ditional FL, which enables the aggregator-free 
FL, tamper-proof parameters record, transparent 
incentives, etc. However, there remain several 
open challenges that need to be addressed:
•	 Heterogeneity. In BFL systems, workers’ 

computational power, network conditions, 
and training data are heterogeneous, which 
may largely affect the convergence rate of 
FL tasks, and even fail to converge. Howev-
er, few BFL systems take them into account 
to avoid negative impacts, while this is pre-
cisely a critical challenge that hinders the 
deployment of BFL systems in practice.

•	 Communication Complexity. Since the 
decentralized aggregation architecture has a 
higher communication complexity than the 
centralized PS architecture, how to improve 
the communication efficiency of BFL sys-
tems is another major challenge. Besides 
designing new aggregation architectures 
and blockchain consensus protocols, com-
pressing or sparsing model parameters is 
another possible way to optimize communi-
cation efficiency.

•	 Model Security. Existing poisoning defense 
methods may fail to prevent some local 
model poisoning attacks [1] and backdoor 
poisoning attacks. One novel poisoning 
defense method utilizes deep learning to 
aggregate gradients from workers [12], 
while it only suits the PS architecture hav-
ing the central aggregator. How to defend 
against backdoor poisoning attacks in aggre-
gator-free BFL systems is still unresolved.

•	 Data Privacy. Private aggregation using 
cryptographic tools can protect parame-
ter privacy well, but it is usually compu-
tation-heavy and only supports limited 
arithmetic operations. Noise perturbation, 
such as adding noise, gradient compres-
sion, and sparsification, is more lightweight, 
but it has a trade-off between model per-
formance and data privacy. Some newly 
proposed methods leverage the trusted 
hardware (e.g., Intel SGX) to do confiden-
tial computing, while the trusted hardware 
has a risk of side-channel attacks. Thus, it 
is non-trivial to design a suitable parameter 
privacy-preserving scheme for BFL systems.

Discussion
•	 How to Choose a Proper Aggregation Archi-

tecture? The PS architecture is more suitable 
for the scenarios where a central aggregator 
is needed, while the All-Reduce and Gossip 
architectures are both aggregator-free and 
more suitable for decentralized self-organiz-
ing systems. The former one is still a central-
ized architecture but utilizes the blockchain 
to ensure the authenticity of updated param-
eters. The latter ones leverage the decentral-
ized blockchain consensus to aggregate the 
global model, which is more robust to DDoS 
attacks. The All-Reduce architecture can 
be applied in medium-scale permissioned 

Due to the decentralized advantage of the blockchain, BFL systems can well apply detection-based 
aggregation rules to exclude anomalous updates.
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networks (corresponding to permissioned/
consortium blockchains), where workers 
should have permission before joining the 
system. The Gossip architecture can be 
deployed in large-scale permissionless net-
works (corresponding to permissionless/
public blockchains), everyone can join the 
FL tasks and compete in the model aggre-
gation right. Besides, they can be hybrid to 
obtain a trade-off between scalability and 
model consistency.

•	 Is Blockchain the Best Option for FL? 
Blockchain is not the only solution for 
decentralized model aggregation, we can 
also use distributed Byzantine protocols 
to enhance the security of FL. However, 
blockchain with its tamper-proof feature 
and automatically executing smart con-
tracts can bring unique features to FL. For 
example, we can use the tamper-proof 
feature of blockchain as a root of trust for 
worker rating; we can also use transpar-
ent and automatically executed smart con-
tracts to develop a fair and open incentive 
mechanism and take blockchain as a 
reward distribution platform to solve the 
problem of the unfairness of centralized 
platform. Anyway, we need to consider 
the necessity of introducing blockchain 
before designing the BFL system.

Conclusion
In conclusion, we survey a curated list of BFL-related 
papers from a system perspective. We deconstruct 
BFL systems into three layers according to the lifecy-
cle of FL tasks. And we review existing BFL systems 
from these three aspects and learn some lessons, 
respectively. After investigating recent advances, 
we discuss several open challenges for designing 
secure, efficient, practical BFL systems. We hope 
this article can help readers explore potential future 
research directions in this field.
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