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ABSTRACT
Mobile Internet enables a huge amount of access requests,
leading to severe network congestion. To alleviate conges-
tion in the transmission layer, lots of Congestion Control
(CC) algorithms have been proposed recently in the research
domain, which are specifically designed for various network
environments. However, one of the teaching difficulties in
mobile Internet education is to allow students to accurately
choose the appropriate CC algorithm under the known or
measurable network environment.
In this paper, we propose a learning-based CC simula-

tor for mobile Internet education, which provides intuitive
suggestions to students on the CC algorithm selections via
its learning ability in practical network environments. Our
simulator consists of three key modules: the network data
module, learning module, and CC module. It has built-in
several default CC algorithms and supports students’ cus-
tomized algorithms. The performance of the proposed simula-
tor is evaluated on the implemented simulator prototypewith
both real and simulated network links. Evaluation results
show that the simulator can dynamically select proper CC
algorithms in the light of network environments to achieve
higher throughput, which benefits students in understanding
the working mechanisms of CC algorithms intuitively.

CCS CONCEPTS
• Computing methodologies→ Modeling and simula-
tion; Artificial intelligence; Machine learning; • Networks
→Network algorithms; •Applied computing→ Educa-
tion.
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1 INTRODUCTION
With the development and popularity of mobile Internet, peo-
ple can access online resources, e.g., video, game, meeting,
and social network, via their mobile devices every time and
everywhere, which brings heavy traffic burden to the net-
work. And due to the highly dynamic network environment
of mobile Internet, severe network congestion is inevitable,
causing poor user experience. In order to alleviate network
congestion, recent advances have been made on Congestion
Control (CC) algorithms [2, 4]. However, traditional analyti-
cal approaches cannot well-explain the algorithm behavior
under the complex network environment.
In mobile Internet education or research, network simu-

lators are commonly used to evaluate the performance of
CC algorithms in different network environments. There
are several popular network simulators, such as ns-3 [11],
OMNeT++ [13], OPNET [3]. ns-3 is primarily targeted for
research and educational usages and achieves stable perfor-
mance, however, is hard to use due to the steep learning
curve. OPNET provides a flexible GUI to simplify simula-
tion designs in complex scenarios but expensive. Although
OMNeT++ offers component-based discrete-event simulator
tools, its mobility extension is incomplete. Besides, existing
network simulators cannot support customized CC schemes.
Specifically, a TCP connection only adopts one CC algorithm
regardless of network environment changes. Facing various
CC algorithms mentioned above, one of the teaching diffi-
culties in mobile Internet education is to allow students to
accurately choose the appropriate CC algorithm under the
known or measurable network environment. Therefore, a
new and powerful CC simulator should be designed to assist
mobile Internet education.
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With the explosion of Machine Learning (ML) and Artifi-
cial Intelligence (AI) fields, ML and AI1 technologies powered
decision-making systems have been widely used in many
fields, including manufacturing, financial modeling, educa-
tion, marketing, etc [5]. Thus, we consider that it is also
promising to leverage learning-based methods to make ac-
curate decisions on switching CC algorithms for TCP con-
nections in different network environments.
In this paper, we propose a learning-based CC simulator

for mobile Internet education, which consists of three mod-
ules, i.e., network data module, learning module, and CC
module. We provide both real and simulated network links
in the network data module, and model data links accord-
ing to three indicators extracted from TCP connections. We
divide the learning module into offline training and online
decision-making sub-modules, to make accurate decisions
on indicators of link models. The CC module embeds sev-
eral optional CC algorithms and switches the optimal CC
algorithm in the light of the decision made by the learning
module periodically. Our contributions are summarized as
follows:
• We import learning methods into the network simula-
tor, which supports dynamic switching of CC algorithms
according to the learning on real network conditions. It
assists students to intuitively understand appropriate CC
algorithms in different network environments.
• We propose the modular design of the network simulator,
including three flexible core modules. It allows students
to customize their learning methods and CC algorithms
as needed.
• We implemented a simulator prototype and conducted
extensive experiments to verify the efficiency of the simu-
lator. Evaluation results show that the CC simulator per-
forms well in highly dynamic mobile network environ-
ments, which is practical for research and education.
The rest of this paper is organized as follows. In Section 2,

we briefly review related work in network simulators. Sec-
tion 3 presents preliminaries of CC algorithms and learning
methods. We introduce the simulator design in Section 4. In
Section 5, we describe the implementation and evaluation of
the proposed CC simulator. Finally, we conclude this paper
in Section 6.

2 RELATEDWORK
We briefly review several popular network simulators or
simulation libraries in this section.
ns-3 [11] is a discrete event-based network simulator for

Internet systems, primarily targeted for research and edu-
cational usage. It supports substantial simulations of TCP,
routing, and multicast protocols over wired and wireless
1ML and AI are collectively referred to as learning in the rest of this paper.
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Figure 1: The congestion window growth function of
CUBIC.

(local and satellite) networks. OMNeT++ [13] is an extensi-
ble, modular, component-based C++ simulation library and
framework, primarily for building network simulators. It
supports internet protocols, wireless networks, switched
LANs, and etc. OPNET [3] can simulate the behavior and
performance of any type of network. The brightest feature
of OPNET lies in its versatility, which allows users to create
and simulate different network topologies. NetSim [12] is an
end-to-end, full-stack, packet-level network simulator and
emulator. It provides users with a developing environment
for protocol modeling and simulating, and allows users to
analyze networks with low cost and high flexibility.

Compared with the above simulators, we observe that the
state-of-the-art simulators cannot integrate learning meth-
ods for switching of CC algorithms according to network
environments.

3 PRELIMINARY
We introduce classical CC algorithms and learning methods
in this section for readers to better understand our designs.

3.1 Congestion Control Algorithms
CUBIC and BBR are two classical CC algorithms widely used
in Wide Area Networks (WAN) and Data Center Networks
(DCN).

3.1.1 CUBIC. CUBIC [4] is the default CC algorithm on cur-
rent Linux systems. As shown in Fig. 1, its CC window grows
per a cubic function, which is designed for better scalabil-
ity in the current fast and long-haul network environment.
The congestion window growth of CUBIC is independent of
Round-Trip Time (RTT) to ensure flow-to-flow fairness.

The working mechanism of CUBIC is illustrated as follows.
When a packet loss occurs, CUBIC records the congestion
window size at this time asWmax then performs a multi-
plicative reduction of the congestion window by a factor β ,
where β is a window reduction constant. After that, TCP fast
recovery and re-transmission are performed as usual. After
entering congestion avoidance from the fast recovery phase,
the window is increased using the concave contour of the
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Figure 2: The working state machine of BBR.
cubic function (corresponding to the left part of Fig. 1). The
cubic function is set to reach a stabilization point atWmax
and then the exploration of a new maximal window. If a new
maximal window exists, the window is increased using the
convex contour of the cubic function.

3.1.2 BBR. Google proposed the BBR [2] CC algorithm in
2016. The core idea of BBR is to use the estimated bandwidth
and latency to directly infer the congestion level and then
calculate the slidingwindow. Theworkflow of BBR algorithm
is shown in Fig. 2, which contains four phases: StartUp,Drain,
Probe_BW, Probe_RTT.

In the StartUp phase, BBR will increase the rate of sending
packets exponentially to explore the maximal BandWidth
(BW) as soon as possible. And then, BBR switches to the
Drain phase, which drains the queue created during the
StartUp phase. After that, BBR enters the cruise state and
switches between the Probe_BW phase and the Probe_RTT
phase periodically. The Probe_BW phase explores a new
maximal BW by sending packets according to the rate gain
[1.25, 0.75, 1, 1, 1, 1, 1, 1] periodically. The Probe_RTT phase
drains queue to refresh a new minimal RTT.

3.2 Learning Method
We introduce the learning methods commonly used for deci-
sion making in this section.

3.2.1 Decision tree learning. Decision Tree (DT) [7] learning
is one of the predictive modeling approaches used in statis-
tics, data mining, and machine learning. It uses a decision
tree (as a predictive model) to walk from observations about
an item (represented in the branches) to conclusions about
the item’s target value (represented in the leaves). Training
a DT model can be divided into three steps: feature selection,
DT generation, DT pruning. There are three classic DT algo-
rithms, i.e., ID3 [9], C4.5 [10], CART [6]. ID3 is the earliest
proposed DT algorithm, which utilizes the information gain
to do feature selection. C4.5 makes improvements based on
ID3, which uses the information gain ratio as an indicator
for feature selection. CART introduces the Gini coefficient
to replace the original information entropy model.

3.2.2 Ensemble learning. Ensemble Learning (EL) [14] is
commonly used to enhance the generalization of models.

The core idea of EL is to train multiple independent base
learners, each learner is generated through existing learning
methods on given training data. EL uses a specific strategy
to aggregate these base learners and makes these learners
work together on learning tasks. In EL, even though one
base learner makes wrong predictions, other base learners
can correct them. Thus, EL-assisted models could achieve a
better performance compared to single learning models.

4 SIMULATOR DESIGN
The overview design of the simulator is shown in Fig. 3,
which contains three core modules: network data module,
learning module, and CC module. The network data module
is responsible for simulating network links and extracting
the key information from packets steaming to model data
links. The learning module receives new modeling features
of data links periodically, and makes decisions via trained
decision models. And the CC module dynamically adjusts
the optimal CC algorithm according to the decisions made by
the previous module. The detailed design of these modules
is described in the following sections.

4.1 Network Data Module
The network data module consists of two sub-modules, i.e.,
network link and network environment modeling. The net-
work link sub-module not only offers real network links by
using real network traffic datasets as input, but also allows
users to construct simulated network links by generating cus-
tomized network data (e.g., tuning the network bandwidth,
data loss rate, RTT). The network environment modeling
sub-module obtains packets from the network links and ex-
tracts the key information of network streams, such as RTT
of TCP connection, the number of ACKs, and then calcu-
lates statistics on these key indicators to model the network
environment.
In order to model the network environment, we firstly

analyze several influence factors that should be concerned
with. As a TCP connection may contain heterogeneous net-
work links, such as LAN, WAN, satellites, it is non-trivial
to illustrate a TCP connection precisely. Thus, we need to
abstract and summarize the network link where the TCP
connection is located.

From a macro perspective, even though a TCP connection
crosses multiple types of data links, one of the data links
may be the bottleneck of the whole TCP connection due to
the low throughput, thereby impacting the throughput of
data transmission significantly. The bottleneck throughput
is expressed by

BtlThr = min(Thr1,Thr2, · · · ,Thrn), (1)
where BtlThr denotes the throughput of the bottleneck link,
Thri denotes the throughput of the i-th data link, which
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Figure 3: The modular design of the learning-based CC simulator.

can be estimated by the delivery rate of packets. According
to Eqn. 1, we observe that the actual throughput of a TCP
connection depends on the minimal throughput of all data
links, i.e., bottleneck throughput. On the other hand, because
the throughput of the bottleneck link is minimal, if the whole
TCP connection transmits data in the maximal transmission
rate, it may happen that the leaving rate of data packets is
smaller than arriving. In this case, those data packets that
cannot leave the bottleneck link in time will be stored in
the buffer queue of the bottleneck link. When the buffer of
the bottleneck link is full, then some data packets will be
discarded, which is called a buffer overflow.
Another important factor is the RTT. Different from the

bottleneck throughput, RTT of the whole TCP connection is
the sum of each data link’s RTT, i.e.,

RTT =
n∑
i=1

RTTi , (2)

where RTTi denotes the round-trip time of the i-th data link
in the whole TCP connection.

Besides the above two keymetrics, the loss rate of links can
impact the performance of data transmission. Provided that
the buffer is large enough, the system measures the packet
loss rate of a link in terms of the number of packets lost as a
percentage of the number of packets sent. Packet loss can be
caused by the lack of stability of the channel, some fading of
the channel, interference during data transmission, defects
in processing equipment, etc. In general, the packet loss rate
of wired channels is very low, while the random packet loss
probability of wireless channels is relatively high. The total
packet loss rate Lossrate of the whole data link where the
TCP connection is located is affected by the packet loss rate of
each segment of the link Lossratei , which can be calculated
as

Lossrate = 1 −
n∑
i=1
(1 − Lossratei ). (3)

Therefore, we consider that we can abstract a complex
data link as a bottleneck link δ , and use a triple

δ ← (BtlThr ,RTT ,Lossrate) (4)

Table 1: Optional data link parameters for generating
training datasets.

Parameter Value
BltThr 0.6, 1.2, 2, 4, 6, 8, 10, 12,16, 20, 24 (Mbps)
RTT 30, 50, 75, 100, 150, 200, 250, 300 (ms)

Lossrate 0, 0.05, 0.1, 0.3, 0.5, 1, 3, 5, 10, 20 (%)

to illustrate the properties of the bottleneck link δ , thereby
simplifying the topology of complete data links. Without loss
of generality, the triple of modeling features can be extended
or customized by other network metrics.

4.2 Learning Module
The learning module consists of two sub-modules, i.e., offline
training and online decision-making.

In the offline training phase, the module trains a decision
model for decision-making. In the CC simulator, the deci-
sion model actually is a classification model. Here we take
DT learning as the learning method and CUBIC and BBR as
the optional CC algorithms. For constructing the training
dataset, we set 8 RTT parameters, 11 BtlThr parameters, and
10 Lossrate parameters, which is shown in Table 1. These
parameters are combined to form 880 different triples, i.e.,
880 types of network environments. And in each network en-
vironment, we evaluate the performance of CUBIC and BBR
respectively, totally for 1760 experiments. Each experiment
last for 20s, the buffer size is set to 300KB, and we select the
CC algorithm which has a larger throughput in the network
environment as the label of this network scenario. In order
to improve the generalization of the trained model and avoid
over-fitting, we also utilize the EL method to aggregate 10
independent DT learning, which achieves a better perfor-
mance than single DT learning method. Although we take
DT learning as an example, users can customize their learn-
ing methods flexibly, such as SVM, CNN, Random Forest,
etc. In this module, we provide DT learning as the default
method.
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In the online decision-making phase, the module receives
the modeling parameters of the network link, i.e., bottleneck
throughput, round-trip time, loss rate, from the network
module periodically, and inputs these parameters into the
trained decision model for obtaining the decision result.

4.3 Congestion Control Module
The CC module is relatively simple, which contains a set
of optional CC algorithms and a CC scheme controller. We
provide CUBIC and BBR as default CC algorithms. Users can
customize their optional CC algorithms flexibly. Once receiv-
ing a new decision from the learning module, the switching
command is forwarded to the CC scheme controller, which
will apply the new CC scheme to send data packets.

It is noted that the decision interval cannot be too long or
too short. If the interval is too long, the effect of switching
CC algorithms is not significant and cannot be observed
intuitively. If the interval is too short, the CC algorithm may
be changed before entering the steady state, which may lead
to network chaos and also brings higher computing cost for
decision-making. Thus, the decision interval should be finely
tuned, which is discussed in Section 5.

5 IMPLEMENTATION AND EVALUATION
5.1 Simulator Implementation
In the network data module, we used Mahimahi [8] to im-
plement the network link, which can adjust BltThr , RTT ,
Lossrate to simulate different network links.We usedOrca [1]
to realize statistics on the information of sending/receiving
packets, such as ACKs, RTT, etc. In the learning module,
we used PyTorch as the learning framework, which allows
users to customize their learning methods in an easy way. In
the congestion control module, we used Orca to implement
the CC scheme controller, which can modify the parameter
settings of TCP connections.

5.2 Performance Evaluation
We evaluated the performance of the simulator under two
types of network conditions, i.e., steady links and dynamic
links. In this experiment, we set the running time of the
simulator as 20s for steady links, 60s for dynamic links to
simulate long TCP streams. The initial CC algorithm is the
default one used in Linux, i.e., CUBIC. The buffer size of
links is set to 300KB, and the buffer queue adopts theDroptail
strategy. The decision interval is 4s, i.e., determining whether
to change the CC algorithm of a TCP connection every 4s.

Steady links. We evaluated the simulator under the net-
work environment with 50 ms RTT , 10 Mbps BtlThr , 0%
Lossrate , whose result is shown in Fig. 4. We observe that
the decision model chose CUBIC in most cases. The reason
is that CUBIC can achieve higher throughput than BBR in

Figure 4: The simulator performance in steady links.

Figure 5: The simulator performance in dynamic links
with multiple attributes changing.

a lossless scenario. Thus, the decision-making meets expec-
tations. And we notice that the simulator switched the CC
algorithm to BBR in the 8-th second. The reason is that the
packet loss rate calculated in the previous decision period
is close to 1%, so the decision model considers BBR is more
appropriate in current network environment. To this end,
the simulator can dynamically adjust the CC algorithm peri-
odically according to the network environment.

Dynamic links. In the dynamic link experiment, we will
adjust data link attributes, i.e., the triple, every 10s to simulate
the changes of data transmission links. The link attributes
changes periodically according to the order

→ (12Mbps, 50ms, 5%) → (6Mbps, 50ms, 0%)
→ (12Mbps, 50ms, 0%) → (6Mbps, 50ms, 5%) →

The evaluation result is shown in Fig. 5. We observe that
the simulator switched the CC algorithm to CUBIC when
the link is lossless, and switched to BBR when the link is
lossy, which indicates the decisions made by the simulator
are accurate.

To further verify the performance of the simulator, we also
evaluated the simulator under real network environments,
which is shown in Fig. 6. The real network traffic datasets
are sampled from an online audio and video site. We observe
that the traffic egress is close to the capacity of links for most
of the time, which indicates that the simulator can switch
the CC algorithms correctly and timely.
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Table 2: Comparison between our proposed simulator and existing network simulators.

Simulator Intelligence Enabled Language GUI Support Ease of Use Available Network
Ours ✓ C++ and Python ✗ Easy Wired, Wireless, Mobile Networks

OMNeT++ ✗ C++ ✓ Easy Wired, Wireless, Adhoc and WSN
ns-3 ✗ C++ and Python ✓ Hard Wired, Wireless, Adhoc and WSN

OPNET ✗ C and C++ ✓ Easy Wired, Wireless, Adhoc and WSN
NetSim ✗ C and Java ✓ Easy Wired&Wireless Sensor Networks

Figure 6: The simulator performance in real network
links with bandwidth fluctuation.

Competitor comparison. We compare our simulator
with several existing popular network simulators in Table 2.
We observe that only our proposed simulator supports learn-
ing intelligence for smarter congestion control, which is
more suitable for analyzing variable mobile networks. More-
over, our simulator provides flexible API interfaces for stu-
dents to call default functions or customize their methods,
so that it is easy to use. However, our simulator does not
have an advantage in terms of market share compared to
existing commercial simulators. Since our simulator is still
in the initial development stage, it is lack of GUI support,
which is one of our future work.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a learning-based congestion con-
trol simulator for mobile Internet education. In particular,
we enable learning methodologies in the network simulator
for fined decision-making on the selection of CC algorithms,
which gives students an intuitive feeling that which CC algo-
rithm performs better under specific network environments.
We introduce the systematic design of the simulator, i.e., the
three modules, and implemented a prototype and verify the
correctness and practicality of the simulator.

In future work, we focus on enhancing the ease of use and
features of the simulator. First, we plan to add a visualiza-
tion interface for the simulator to provide easier operations.
Second, we will embed more CC algorithms and learning

methods in the simulator as default options, which will be
beneficial for fresh students.
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