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Abstract—The recently proposed Join Cross-Tags Protocol
(JXT) addresses the long-standing issue of excessive query
overhead in table joins within Searchable Symmetric Encryption
(SSE). As a purely symmetric-key solution, JXT supports efficient
conjunctive queries over equi-joins of encrypted tables without
requiring any pre-computation during the setup phase. However,
JXT has a potential limitation: it may inadvertently reveal the
actual volumes of identifiers corresponding to attribute-value
pairs, as well as the result values of the join queries. In this
paper, we propose JXTMM (JXT multi-map), the first join query
scheme designed to hide both volume patterns and result patterns.
JXTMM is capable of concealing identifier volumes, preventing
the server from learning the actual volumes of attribute-value
pairs, and shifting the checkability of join results to the client
side, thereby eliminating result pattern leakage. We provide a
formal security proof for JXTMM, along with a comprehen-
sive efficiency analysis. Experimental results demonstrate that
JXTMM not only performs efficiently on table join queries but
also effectively achieves volume-hiding in such queries.

Index Terms—Searchable Encryption, Volume-Hiding, Join
Queries, Encrypted Multi-map

I. INTRODUCTION

With the rise of cloud computing and storage, individuals
and organizations increasingly store large volumes of data
on off-site hosting platforms. However, cloud servers are
vulnerable to privacy leakage of hosted data. To address this
challenge, several methods for encrypted data search have been
proposed. For example, Symmetric Searchable Encryption
(SSE), a specific case of Structured Encryption (STE) [1], en-
ables data owners to outsource encrypted data to cloud servers
while retaining the ability to retrieve it through keyword
searches. To further improve retrieval efficiency, Curtmola et
al. [2] proposed an SSE scheme based on inverted indexes.
Additionally, Wang et al. [3] enhanced the security of SSE by
leveraging the concept of privacy-preserving set intersection
to protect retrieval patterns. Despite these advancements, most
SSE-based schemes only support single-keyword searches [2]–
[6], which limits search expressiveness. Furthermore, single-
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keyword searches often incur high communication costs in
practical applications.

To overcome the above weaknesses, the Oblivious Cross-
Tags (OXT) protocol [7] is introduced to enable conjunctive
and general Boolean queries on encrypted relational databases.
This is accomplished by employing two specialized data
structures: the TSet (a cryptographic inverted index) and the
XSet (a list of hash pairs). For instance, Cash et al. [8]
has achieved asymptotic improvements over the prior OXT
scheme by constructing a generic dictionary structure. It can
reach optimal leakage minimization, high search computation
efficiency, and parallelism search operations. Thus, the scheme
can support operations on a dataset with ten of billions of
record/keyword pairs. Faber et al. [9] extended search to rich
and comprehensive query types by reducing range queries
to a disjunction of exact keywords, while other sub-queries
(such as substring, wildcard, and phrase queries) are performed
with homomorphic computation on encrypted positional in-
formation. Patranabis et al. [10] introduced “dynamic cross-
tags” to facilitate the dynamic addition and deletion of records
in encrypted databases. Nevertheless, the OXT protocol is
not efficient in handling table join queries, since it requires
an exponentiation operation for every attribute-value pair in
the database once the data is encrypted and the XSet is
computed. To address this efficiency problem, schemes such
as a supporting join queries encryption scheme (SPX) [11],
a variant of SPX by introducing the technique of partially
pre-computed joins (CNR) [12] are proposed. But they relies
heavily on pre-computing all possible joins and storing all the
results in the encrypted database.

Thus, the Join Cross-Tags (JXT) protocol [13] is proposed to
enable efficient conjunctive queries on equi-joins of encrypted
tables. It is a purely symmetric-key solution without any
pre-computation at setup. Specifically, JXT decomposes join
queries into sub-query on each respective table, and executes
these join queries across tables with join attributes. Each table
processes its own sub-query independently, and generates two
search tokens for each sub-query: one for all entries in this
table, and another (termed “cross-marked auxiliary token”)
for containing entries from the same table and others. Once
the two search tokens are used to locate matching entries in
the TSet, their membership is verified in the XSet. Following
JXT, several improved schemes have been proposed to enhance
efficiency, security, and expressiveness in join queries. For
instance, TNT-QJ [14] for practical Boolean queries, OTJXT
[15] for eliminating the conditional combination pattern leak-
age, and a dynamic multi-user protocol FBJXT [16] providing
forward and backward security.
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TABLE I: Comparison with previous schemes.

Scheme Search Type Storage Cost Computation Cost Communication Cost Pattern Hiding
Client Server Volume Result

XORMM [17] Single 1.23n·ev + β O(ℓmax) O(ℓmax) O(ℓmax) ✓ ×
OXT [7] Conjunctive (xt+ ev + y)n O(x · ℓ1) O(ℓ1) +O(x · ℓ1) O(x · ℓ1) × ×
JXT [13] Join (ev+y)n+xt ·m ·T O(ℓ1 + ℓ2) O(ℓ1 + ℓ2) +

O(ℓ1ℓ2)
O(ℓ1 + ℓ2) +
O(|DB(q)|)

× ×

OTJXT [15] Join (ev + y)n · T O(ℓ1 + ℓ2) O(ℓ1 + ℓ2) O(ℓ1 + ℓ2) +
O(|DB(q)|)

× ×

TNT-QJ [14] Boolean Join (ev+y)n+xt ·m ·T O(x ·n′
+x · ℓmax) O(logn)+O(ℓ1 ·ℓ2) O(x · n′

) +O(ℓ1 +
ℓ2)

× ×

FBJXT [16] Dynamic Join (ev+y)n+xt ·m ·T O(ℓ1 + ℓ2)) O(ℓ1 + ℓ2) +
O(ℓ1ℓ2)

O(ℓ1 + ℓ2) × ×

JXTMM Join 1.23n(ev+y+h)+β O(ℓmax1 + ℓmax2 ) O(ℓmax1+ℓmax2 )+
O(ℓmax1 · ℓmax2 )

O(ℓmax1 +
ℓmax2 ) +O(ℓmax1 ·
ℓmax2 ) +O(BF)

✓ ✓

Let n denote the number of multi-maps consisting of attribute-value pairs and corresponding identifiers. Let m and T represent the number of records
and join attributes in the data table Tab, respectively. ev is the encrypted identifier, y is a blinded value, xt is the cross-tag in XSet and h is the hash
value of xt. x denotes the number of conjunctive keywords. ℓi is the number of identifiers matching the attribute-value pair wi (i.e., the volume). ℓmax1
and ℓmax2 represent the maximum volumes across all attribute-value pairs in each table. |DB(q)| denotes the result size of query q. Additionally, β is a
small positive integer representing the XOR filter parameter, n

′
is the size of bucket in TNT-QJ and BF denotes the query complexity in the bloom filter.

Details are discussed in Sec. VII.

However, schemes for conjunctive queries on equi-joins of
encrypted tables, such as JXT [13], still suffer from several
leakage risks. These include the leakage of volume and result
patterns in table join query protocols. The result pattern
leakage can reveal the value of returned identifiers, while the
volume pattern leakage may expose the number of returned
identifiers [18]. Several works [19]–[22] have been proposed
to reconstruct the plaintext data and infer the queried keywords
by analyzing the result pattern or volume pattern. To address
this security problem, Kamara et al. [23] developed encrypted
multi-maps (EMMs) to hide the volume of values associated
with a single key. Their proposed construction can reduce the
storage cost at server to O(n) while maintaining O(ℓ log n)
query complexity. Since then, a series of EMM-based schemes
[17], [18], [24] for volume-hiding query have been developed.
However, these approaches can only eliminate volume pattern
leakage risks for single keyword search. Similarly, some recent
[25], [26] works have attempted to support volume and other
pattern hiding in more advanced query settings. [25] achieves
a response and volume hiding for conjunctive keyword search
using homomorphic encryption and PSI protocols. Another
work [26] designs an efficient multi-range query scheme that
hides both access and volume patterns via ORE and SGX-
based techniques.
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Fig. 1: Leakage risks.
As Fig. 1 illustrated, the leakage risks in JXT is given as

follows: (1) The client encrypts the transactions and merchants
tables, which are then sent to the server. (2) A query is issued
by the client to join the two tables on the “Transaction ID”
attribute, and is filtered by specific conditions (e.g., “Date =
01/2024” and “Merchant Name = Apple”). (3) Upon executing
the search algorithm, the server can observe the number of

identifiers (i.e., the volume) associated with the attribute-
value pairs. (4) Once an attacker accumulates a sufficient
number of volume observations from the server, it may be
able to reconstruct the entire dataset by the data reconstruction
attack [27]–[29]. (5) Additionally, the server always performs
membership detection by examining the XSet, which may
incur result pattern leakage.

Consequently, the problem can be framed as follows: is it
possible to design a table join query scheme that eliminating
both volume leakage and result leakage attacks?

In this paper, we construct a pattern-hiding table join
query scheme, termed JXTMM (JXT multi-map). We compare
JXTMM with existing methods in terms of search type, storage
cost, client computation cost, server computation cost, and
security strength (see TABLE I). Compared with XORMM
[17], which supports only single keyword queries with volume-
hiding but cannot handle join operations, and with schemes
such as JXT [13], TNT-QJ [14], OTJXT [15], FBJXT [16],
which support join queries but leaks both volume and re-
sult patterns, JXTMM achieves efficient join queries while
providing strong pattern-hiding guarantees. The challenges of
constructing JXTMM go beyond simply combining JXT and
the XOR filter. We leverage the strengths of the XOR filter
[30] to design new forms of TSet and XSet. For TSet, we
build an EMM by encrypting attribute-value pairs along with
their identifiers. Each multi-map is inserted into the XOR filter
using a constrained pseudorandom function, and the remaining
empty positions are filled with dummy values. For XSet,
we map the hash values of “cross-tag” xtags into an XOR
filter, and shift the membership checking task to the client.
This prevents the server from inferring correlations between
xtags during query execution and eliminates result pattern
leakage. In this way, JXTMM achieves the first table join query
scheme with both volume and result pattern hiding. The main
contributions of this paper are summarized as follows:

• To the best of our knowledge, JXTMM is the first pattern-
hiding join query scheme. It is designed to eliminate the
volume and the result pattern leakage in JXT. JXTMM
can also achieve practical efficiency in the query process.
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• To suppress the volume pattern leakage, we reconstruct
TSet structures for all attribute-value pairs. It can record
identifiers that contain the attribute-value pairs in a
volume-hiding manner. Specially, we combine the XOR
filter and a constrained pseudorandom function with
the multi-map (including the attribute-value pairs and
identifiers) techniques.

• To eliminate the result pattern leakage, we move the
XSet membership checkability task from the server to
the client. In details, the server only generates candidate
xtag values, while the client is in charge of the xtag
membership testing.

• A comprehensive and formal security analysis is con-
ducted to demonstrate the security of JXTMM, including
the analysis of its leakage functions, specific volume-
hiding properties and adaptive security. Furthermore, we
perform JXTMM on a database consisting of two tables.
The experimental results have shown that, compared to
the JXT [13], JXTMM can achieve volume-hiding table
join queries with practical efficiency.

The structure of the paper is outlined as follows. Section
II provides a review of related work. Section III introduces
the preliminaries. Sections IV presents the formalization of
the system model, scheme definition, and security model.
Then, our construction is proposed in Section V, followed
by the security analysis and the efficient analysis in Section
VI and Section VII, respectively. Section VIII presents the
performance evaluation and comparison. Section IX discusses
the limitations and future work. Finally, Section X concludes
the paper.

II. RELATED WORK

A. Symmetric Searchable Encryption

STE has emerged as a fundamental technique in enabling
secure and efficient operations on encrypted data. Chase et
al. [1] first introduced STE to enable secure query on the
encrypted arbitrary data structures [11], [31], such as graphs
or relational databases. It has garnered much attention for
the widely applications in cloud services, legal surveillance
or network provenance [32]–[34]. As a special case of STE,
symmetric searchable encryption [35] has been extensively ex-
plored from three key perspectives as follows: Firstly, several
works focused on the security improvement. For instance, Zuo
et al. [36] designed a bitmap index, and all files are encoded
with binaries to achieving a strong security. Amjad et al.
[37] introduced the concept of associative security in SSE,
and formally demonstrated the way to defend against various
injection attacks based on the associative security. Secondly,
saving the cost of storage, communication or computation
in SSE is another important problem. e.g., Wang et al. [3]
proposed a scheme to guarantee the system security by hiding
the search pattern without relying on Oblivious RAM. Liu et
al. [38] leveraged an order-weighted inverted index and bitmap
structure to achieve high search efficiency. A partitioning
strategy is also introduced to make it fit to large-scale datasets.
At last, researchers also conducted on extending expressive
queries to improve the application flexibility, such as Chen

et al. [39] introduced a semantic-extended ciphertext retrieval
method based on the word2vec model, which enables efficient
context-aware and semantically range SSE. Li et al. [40]
proposed a method for querying with multiple keywords on
specific boolean expressions.

B. Secure Table Join Queries

Table join query is important for performing expressive
queries on encrypted relational databases, which is hard to
be supported by the SSE. Specifically, Kamara et al. [11] pro-
posed a scheme termed SPX based on structured encryption.
This approach pre-computes and stores all possible joins in
the encrypted database with a heuristic normal form repre-
sentation. However, SPX incurs significant storage overhead
due to the pre-computation of equi-joins. To address this
issue, Cash et al. [12] introduced the concept of partially
pre-computed joins by offloading certain join operations to
the client. Different from prior join query methods, JXT [13]
avoids join pre-computation by letting the server perform sub-
queries on two tables. It verifies the existence of all combina-
tions that match record identifiers and the attribute-value pairs
across tables. Wu et al. [14] proposed TNT-QJ, a practical
TwiN cross-Tag protocol, which supports arbitrary Boolean
queries in both disjunctive and conjunctive normal forms over
multi-table joins. This approach reduces storage overhead and
improves query efficiency. Xu et al. [15] introduced OTJXT, an
equi-join scheme that eliminates the conditional combination
pattern leakage of JXT across multiple queries. OTJXT also
addresses linear search complexity, yielding significant gains
in both search and storage efficiency. Recently, Li et al. [16]
introduced a dynamic and secure join query protocol FBJXT
for multi-user environments. FBJXT achieves forward and
backward security through dynamic oblivious cross-tags, while
also resisting key leakage and mitigating collusion attacks by
using distributed key-homomorphic PRFs.

C. Leakage Pattern in SSE

The leakage concerns remain challenge for secure queries.
Several prior searchable encryption schemes [41]–[43] have
revealed certain information about the queries and their corre-
sponding responses. These concerns are generally categorized
into three types: search-pattern leakage, result-pattern leakage,
and volume-pattern leakage. As [13] mentioned, most prior
SSE schemes are vulnerable to the volume-pattern leakage
attacks. For instance, Kellaris et al. [20] introduced the first
data reconstruction attack based solely on the volume of the
search results. However, this attack needs the adversary to
perform O(n4 log n) queries, and requires the knowledge of
underlying query distribution. Then, Grubbs et al. [21] intro-
duced several attack scenarios, which assume either a uniform
query distribution or one known distribution to the adversary.
Additionally, an AOR (Approximate Order Reconstruction)
attack is proposed to instead of value reconstruction. It can
achieve the attack goals without relying on strong assumptions.
Gui et al. [29] proposed volume attacks which can effectively
perform on missing or spurious queries, as well as on the noisy
results.
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A straightforward approach to mitigate volume-pattern leak-
age is initial padding. It can make each result size to the
same length, which is the maximum volume. However, the
padding method always incurs significant storage overhead.
Thus, Kamara et al. [18], [23] proposed the first volume-
hiding encryption scheme for encrypted keyword searches.
It can achieve volume-hiding by padding all query results
to a fixed size. In order to further reduce the storage and
search overhead, Patel et al. [24] introduced a delegatable PRF
volume-hiding encrypted multi-map (dprfMM), which utilizes
the cuckoo hashing and delegatable PRFs techniques. But
its query communication efficiency still remains suboptimal.
Therefore, Wang et al. [17] developed a lossless volume-hiding
EMM scheme (XORMM) based on XOR filters to reduce
query communication and storage overhead. It also introduced
a practical verifiable EMM scheme through an authentication
method. Nevertheless, the above schemes are all limited to
supporting only single-keyword queries, which significantly
restricts their practicality in real-world applications.

III. PRELIMINARIES

In this section, we introduce the fundamental cryptographic
primitives that underpin our scheme, namely constrained
pseudorandom functions (cPRFs) and encrypted multi-maps
(EMMs). To ensure clarity and readability, all mathemati-
cal notations used throughout the paper are summarized in
Table II, which specifies both their meaning and domain
information. This unified notation table serves as a reference
point for the subsequent sections, avoiding ambiguity and
enhancing logical consistency.

TABLE II: Notations.

Notations Descriptions
K the PRF master key space
X , Y the PRF input domain and the PRF output range
λ a security parameter
k ∈ K a PRF master key
f a random function
P the family of predicates
Kc the constrained key space
kp ∈ Kc a constrained key associated with predicate p
MM the multi-map storing key/value pairs
K the multi-map key space
V the multi-map value space
−→
v[c] the c-th element of the value vector
q a query
Kd a cPRF key
Ke, KI , KW , KZ , K′

Z and KH symmetric keys with the length λ
w the attribute-value pair
−→
ind the identifier
i the order of a multi-map (wi,

−−→
indi) in MM

j the order of
−−→
indi mapped by wi

DB the relational database
attr∗ the common attribute value in the DB
EMM, XMM the XOR filters
EDB the encrypted database
h0, h1 two different hash functions
BF the bloom filter

A. Constrained Pseudorandom Function

We begin with the notion of pseudorandom functions (PRFs)
and then extend it to constrained pseudorandom functions
(cPRFs), which reduce computation complexity in our scheme.

A pseudorandom function (PRF) F : K × X → Y . Its
advantage for any adversary A in probabilistic polynomial
time (PPT), is as follows:

AdvPRF
A,F (λ) = |Pr[AF (k,·)(λ) = 1]−Pr[Af(·)(λ) = 1]| (1)

It is negligible in λ, where k
$←− K and f is a random

function from X to Y . Specifically, when X = Y , we call F
a pseudorandom permutation.

To enable fine-grained control, we consider a family of
predicates P = {p : X → {0, 1}}, a PRF F : K × X → Y
is constrained if there is an additional key space Kc and two
additional algorithms F.Cons and F.Eval:

(1) F.Cons(k, p): it takes a PRF key k ∈ K, the description
of a predicate p ∈ P as input, and outputs a constrained key
kp ∈ Kc. The key kp enables the evaluation of F (k, x) for all
x ∈ X s.t. p(x) = 1.

(2) F.Eval(kp, x): it takes a constrained key kp ∈ Kc and
an x ∈ X as input. If kp is the output of F.Cons(k, p) for a
PRF key k ∈ K then F.Eval(kp, x) outputs

F.Eval(kp, x) =
{
F (k, x), if p(x) = 1
⊥, otherwise

(2)

where ⊥ /∈ Y .
Security intuition. Informally, a cPRF ensures that the

function values revealed under constrained keys remain in-
distinguishable from random values at all other points [44].
Formally:

Definition 1. A PRF F is constrained secure with respect to
P if for all PPT adversaries A, its advantage

AdvPRF
A,F (λ) =

∣∣Pr[ExpPRF (1) = 1]− Pr[ExpPRF (0) = 1]
∣∣

is negligible.

The experiment ExpPRF (b) is structured as follows. A
random key k ∈ K is sampled, and three empty sets
P, V,C ⊆ X are initialized: V records evaluated points,
C records challenge points, and P records predicates. The
invariant C ∩ V = ∅ prevents trivial attacks. The adversary A
can issue the following queries:

• Evaluation(x): If x /∈ C, return F (k, x) and update V ←
V ∪ {x}.

• Constrained-key(p): If p(x) = 0 for all x ∈ C, return
kp = F.Cons(k, p) and update P ← P ∪ {p}.

• Challenge(x∗): If x∗ /∈ V and p(x∗) = 0 for all p ∈ P ,
then return F (k, x∗) if b = 0, or a random y ∈ Y if
b = 1. Update C ← C ∪ {x∗}.

Finally, A outputs a bit b′, which is also the experiment’s
output.

B. Encrypted Multi-Maps

Next, we recall the encrypted multi-map (EMM), a key
data structure enabling efficient query processing on encrypted
databases.

A multi-map stores key/value pairs MM = {(key,−→v )},
where key ∈ K and

−→
v[c] ∈ V denotes the c-th entry of the

value vector associated with key [18], [23]. It supports:
• MM.Get(key): return −→v = MM[key].

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3627000

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 31,2025 at 16:04:33 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 20XX 5

Client

Server

①

encrypted

database

EMM

Encryption

Q

TN

②

SELECT ID-1, ID-2 

FROM Transactions JOIN Merchants ON Transaction ID

WHERE Date = 01/2024 AND Merchant Name = Apple

③Search operation

Generate 

search token

Decryption

Membership Check

✔ Reject

✔

×BF

Result

Hiding
⑤

ID-1
Date(MM/

YY)
Transactio

n ID

T1 01/2024 5S4D2

T1 02/2024 2C3W3

T2 09/2023 6R9Q7

T3 01/2023 3A5J6

T4 01/2024 8M2H7

ID-2
Merchant 

Name
Transactio

n ID

M1 Apple 5S4D2

M2 Exxon 9N2E8

M2 Gucci 6R9Q7

M3 Five Guys 7O5V3

M4 Apple 8M2H7

Transactions Table

Merchants Table

attribute-value pairs
record 

identifiers

Date = 01/2024
AND 

Merchant Name = Apple
T1,M1

Date = 01/2024
AND 

Merchant Name = Apple
T4,M4

…… ……

Volume=？

Volume

Hiding

R

④
0 1 0 1 0

Bloom Filter

⑥

Fig. 2: System model overview.

• MM.Put(key,−→v ): store (key,−→v ) in MM.
To secure queries, we use an encrypted multi-map (EMM),

defined as EMM = (Setup, Search):
• Setup(1λ,MM): On input a multi-map MM and security

parameter λ, output (EMM,K) where K is a secret key.
• Search(K, q; EMM): Using K and query q, produce a

token tkq for the server. The server searches EMM with
tkq and returns the encrypted result EMM[q], which the
client decrypts using K to obtain MM[q].

IV. PROBLEM FORMULATION

In this section, we introduce the formal problem setting
of our scheme. We begin with the system model and query
workflow, then describe the corresponding security model, and
finally specify the leakage patterns that will be considered in
our analysis. To avoid ambiguity, all mathematical symbols
used below are explicitly defined in the table of Notations
(see Section III).

A. System Model

Our system consists of two entities: a client and a server,
as illustrated in Fig. 2.

• The client owns a relational database

DB = {MMTab}Tab∈[N ],

where each MMTab is a multi-map table containing
attribute-value pairs and their associated record identi-
fiers.

• Formally, each table is represented as

MMTab = {(w,
−→
ind)},

where w denotes an attribute-value pair and
−→
ind the

corresponding set of record identifiers.
Due to limited local resources, the client outsources the

encrypted database to a remote server. The query processing
workflow proceeds as follows:

• Step ①: The client encrypts each table, mapping attribute-
value pairs and corresponding record identifiers into an
encrypted multi-map (EMM), and uploads the encrypted
database to the server.

• Step ②: For a query set Q, the client generates search
tokens (TN) and sends them to the server.

• Step ③: Upon receiving a token, the server retrieves
candidate attribute-value pairs and their record identifiers.
The scheme ensures that the volume of identifiers remains
hidden, as all attribute-value pairs are padded to the same
size.

• Step ④: The server stores the xtags corresponding to
the retrieved identifiers in a Bloom filter to verify valid
matches. It then returns the Bloom filter along with the
encrypted result set to the client.

• Steps ⑤ & ⑥: The client decrypts the result set and
checks membership using the Bloom filter, accepting only
verified results.

This design allows table join queries over encrypted data
without pre-computation, while hiding volume and result pat-
terns to mitigate potential leakage risks.

B. Security Model

To capture the adversarial capabilities, we define the secu-
rity of our scheme through two games: a real-world game and
an ideal-world game.

Let
∑

= (Setup,Search) denote the JXTMM scheme,
A a probabilistic polynomial-time (PPT) adversary, and S
a simulator. If A cannot distinguish between the real and
ideal games with non-negligible probability, then the scheme
is secure with respect to the leakage function L.

• Real
∑
A (λ): The adversary A selects a table MMTab.

The Setup algorithm generates the encrypted database
EXMM, which is given to A. Then A adaptively issues
queries. For each query q, the Search algorithm is exe-
cuted and the transcript is returned. Finally, A outputs a
bit b ∈ {0, 1}, indicating its guess.
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• Ideal
∑
A,S(λ): The adversary A(1λ) selects a table

MMTab. The simulator S generates EXMM based only
on the leakage function L(MMTab), which is returned
to A. For each query q, S(L(MMTab, q)) produces the
transcript. Finally, A outputs a bit b as in the real game.

Definition 2. A JXTMM scheme
∑

= (Setup, Search) is L-
adaptively secure if, for every stateful honest-but-curious PPT
adversary A, there exists an efficient simulator S such that∣∣Pr[Real

∑
A (λ) = 1]− Pr[Ideal

∑
A,S(λ) = 1]

∣∣ < negl(λ).

Here, A may make a polynomial number of queries poly(λ)
against the challenger C.

C. Leakage Patterns

Finally, we describe the potential leakage captured in our
model, following the framework in [13]. Suppose that h
queries are executed, denoted by the history q = (q1, . . . , qh),
where each qi is a join query. The leakage function L reveals
the following patterns:

• Domain Size (dsize): Total number of attribute-value
pairs and identifiers in a table.

• Result Pattern (rp): The set of identifiers matching each
query.

• Response Length (rlen): Number of identifiers associ-
ated with each attribute-value.

• Query Equality (qeq): Indicates whether two queries are
identical (search pattern).

• Maximum Response Length (mrlen): Maximum num-
ber of identifiers associated with any attribute-value.

• Join Attribute Distribution (jd): Frequency distribution
of join attribute values attr∗ in the first table.

• Conditional Intersection (ip): Intersection of identifiers
between two distinct join queries.

V. CONSTRUCTION OF JXTMM

In this section, we propose the volume-hiding and result-
hiding table join query scheme (JXTMM). A technical
overview of the JXTMM scheme is provided at first, and then
the specific details of the scheme are given.

A. Technical Overview

The main idea of JXTMM scheme is to store the table
MMTab in a multi-map form, which contains attribute-value
pairs wi and their corresponding identifiers

−−→
indi.

Specifically, the encryption algorithm inserts the multi-map
MMTab = {(wi,

−−→
indi)} into the XOR filter. Each wi can be

associated to one or more indi, and the order of the indi is
denoted as indices j, where j ∈ [ℓmax]. Then, by performing
the XOR filter’s mapping steps, each attribute-value/identifier
pair (wi, indi[j]) together with an index k of a temporary
array (exactly, ((wi, j), k)) is pushed into a stack sequentially.
After that, the encryption of the value indi[j] associated with
each pair ((wi, j), k) in the stack is inserted into the EMM.

In particular, the ciphertext Enc(Ke, indi[j]) is placed
into the EMM by setting EMM[k] = EMM[FKd

(wi||j||1)]

⊕ EMM[FKd
(wi||j||2)] ⊕ Enc(Ke, indi[j]), where k =

FKd
(wi||j||0), Ke is a symmetric encryption key, and Kd

is cPRF key to reduce the communication complexity. Based
on [45], when the XOR filter is mapped 3 times, the storage
space of the EMM is minimized to ⌊1.23n⌋ + β. Then,
a concrete example of the XOR filter is given in Fig. 3.
In the figure, the “Temporary Array T” is a temporary ar-
ray for ((wi, j), k), while “Array B” represents the EMM.
The client can query any attribute-value pair wi, by simply
sending the 3ℓ PRF values {FKd

(wi||j||0), FKd
(wi||j||1),

FKd
(wi||j||2)}j∈ℓmax

as a search token to the server. Upon
receiving the token, the server can directly retrieve correspond-
ing values {EMM[FKd

(wi||j||t)]}t∈{0,1,2} for each j∈ ℓmax,
and at last obtains the final ℓmax results by performing the
XOR operation. In this way, the server will return search
results for all queries with the same volume ℓmax, thereby
achieving volume-hiding.

d

c
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b

T[1]

d

c

T[2]

a

T[3]

b

a

T[4]

c

d
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52( )H c r r 

Fig. 3: XOR filter.
To prevent result pattern leakage and obfuscate the exact

number of identifiers, our JXTMM scheme modifies the struc-
ture of XSet. Specifically, the JXTMM scheme constructs
a structure termed XMM with an XOR filter. It employs a
symmetric hash key KH , a hash function h0 with an output
range of ⌊1.23n⌋ + β and a hash function h1, and stores
the hash value h1(KH , w||indi[j]) ⊕ h0(Fp(KI , indi[j]) +
Fp(KW , attr∗)||1)⊕h0(Fp(KI , indi[j])+Fp(KW , attr∗)||2)
at the position h0(Fp(KI , indi[j])+Fp(KW , attr∗)||0). Con-
sequently, the server is unable to distinguish the values be-
tween genuine hashes and spurious entries. Then, all hash
values are sent to the client. Additionally, we integrate these
hashes into the bloom filter to enhance the efficiency of the
response overhead.

B. Building Blocks

In this section, we present the construction of the JXTMM
scheme. It mainly consists of two polynomial-time algorithms:
JXTMM.Setup (Algorithm 1) and JXTMM.Search (Algo-
rithm 2). Fig. 4 provides an overview of the encrypted multi-
map construction and join query process. The following con-
tent present a detailed description of each step, including token
generation, server-side retrieval with bloom filter checks, and
client-side decryption and verification. A detailed description
is provided below.

Setup(1λ,MMtab, attr
∗) → (K,EXMM): As shown in

Algorithm 1, the Setup algorithm is executed by the client,
with inputs including a security parameter λ, a multi-map
MMtab for each table, and a common join attribute attr∗.
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(a) Example of the setup algorithm.
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(b) Example of the search algorithm.
Fig. 4: Illustration of algorithm operations. Take the query statement ”SELECT * FROM TabA JOIN TabB ON

attr∗ = attr∗1 WHERE wA = wA,1 AND wB = wB,1” as an example.

Each table is processed independently, so only one MMtab is
handled at a time. The output is a set of symmetric keys K
and data structures EXMM = (EMM,XMM). An example of
encrypted database construction is shown in Fig. 4a. The orig-
inal multi-maps TabA and TabB are first processed to form
encrypted multi-maps EMMA and EMMB . Each attribute-
value-identifier pair (e.g., (wA1

, indA1
)) is mapped using

the cPRF FKd
, combined with auxiliary values (y, y′), and

encrypted as Enc(Ke, indA1). The resulting entries are stored
in EMM, while empty slots are filled with dummy values to
ensure consistency. Next, XMM is constructed: each identifier
indA1

together with the join attribute attr∗ is processed via
Fp functions, and the results are mapped into positions using
the hash function h0. To further obfuscate the identifiers, h1
is applied, and dummy values are inserted to conceal the true
distribution. The details of the Setup algorithm are as follows:

• Scheme parameters: As demonstrated in Algorithm 1,
the client randomly selects a constrained PRF (cPRF) key
Kd and a set of symmetric keys with the length λ, i.e.,
Ke, KI , KW , KZ , K ′

Z , and KH . Then it initializes the
following structures into empty sets, including xlist, two
XOR filters EMMTab and XMM, two stacks S1 and S2,
two queues Q1 and Q2, two temporary arrays T1 and T2.

• Encryption parameters: For the encryption procedure,
the client first generates a set of “padding elements” in
the form of z0 = Fp(Kz, wi||0), z′0 = Fp(Kz′ , wi||0)
on each attribute-value pair wi. Then it iterates over
the identifiers corresponding to each attribute-value pair.
The additional “padding elements” and “cross-tag” are

calculated as:
zcnt = Fp(Kz, wi||j)
z′cnt = Fp(Kz′ , wi||j)

xlist[i][j] = Fp(KI , indi[j]) + Fp(KW , attr∗)

(3)

Based on the “padding elements”, the client computes
the “blinded values” y and y′ to protect identifiers and
attribute-value pairs:

y = Fp(KI , indi[j])− (z0 + zcnt)

y′ = Fp(KW , attr∗)− (z′0 + z′cnt)
(4)

• EMM encryption: (1) The algorithm utilizes a tempo-
rary array T to store the attribute-value-identifier pairs
(wi, indi[j]) from the multi-map MM. Each pair is
inserted into the T at an index k determined by the
cPRF FKd

(wi||j||0). (2) Once all pairs are inserted, the
algorithm searches T for entries T [k]. When such an
entry is found, the pair and its index k are removed
from T and pushed into the stack S. This process repeats
until all pairs in MM are processed. (3) The stack S then
holds successfully processed entries from T , denoted by
mapped-temporary index pairs ((wi, j), k). Subsequently,
the encrypted values indi[j] of each pair, along with the
y and y′ are inserted into the EMM. For each pair, the
algorithm sets:
EMM[k] =EMM[FKd

(wi||j||0)]⊕ EMM[FKd
(wi||j||1)]⊕

EMM[FKd
(wi||j||2)]⊕ Enc(Ke, indi[j])

(5)
where Enc(Ke, indi[j]) is a ciphertext. Finally, empty

slots in the EMM are filled with dummy values to ensure
the consistency and integrity of the multi-map.
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Algorithm 1 The Setup of JXTMM

Setup(1λ,MMTab, attr
∗):

Input: 1λ,MMTab, attr
∗

Output: (K, EXMM)
1: Kd,Ke,KI ,KW ,KZ ,KZ′ ,KH ← {0, 1}λ
2: EMMTab,XMM← ∅
3: S1, S2, Q1, Q2, T1, T2 ← ∅
4: xlist← ∅

// Encrypt parameters
5: for i ∈ [n] do:
6: z0 = Fp(Kz, wi||0), z′0 = Fp(Kz′ , wi||0)
7: for j ∈ [|

−−→
indi|] do

8: zcnt = Fp(Kz, wi||j), z′cnt = Fp(Kz′ , wi||j)
9: xind = Fp(KI , indi[j]), xw = Fp(KW , attr∗)

10: xlist[i][j] = xind+ xw
11: y = xind− (z0 + zcnt), y′ = xw − (z′0 + z′cnt)

// Insert MMTab into XOR filters
12: for i ∈ [n] and j ∈ [|

−−→
indi|] do

13: for t = 0 to 2 do
14: T1[FKd(wi||j||t)]← (wi, indi[j])
15: pos← h0(xlist[i][j]||t)
16: T2[pos]← (wi, indi[j])

17: for k = 0 to |T1| do
18: if |T1[k]| = 1 then
19: Q1 ← k

20: if |T2[k]| = 1 then
21: Q2 ← k

22: while Q1 ̸= null do
23: k ← Q1

24: (wi, indi[j])← T1[k]
25: S1 ← ((wi, indi[j]), k)
26: for t = 0 to 2 do
27: T1[FKd(wi||j||t)]← T1[FKd(wi||j||t)]/(wi, indi[j])
28: if T1[FKd(wi||j||t)]| = 1 then
29: Q1 ← FKd(wi||j||t)

30: while Q2 ̸= null do
31: k ← Q2

32: (wi, indi[j])← T2[k]
33: S2 ← ((wi, indi[j]), k)
34: for t = 0 to 2 do
35: T2[pos]← T2[pos]/(wi, indi[j])
36: if T2[pos]| = 1 then
37: Q2 ← pos

38: if (|S1| ̸= |MMTab|)||(|S2| ̸= |MMTab|) then
39: return Failure

// Encrypt the associated value in XOR filters
40: for ((wi, indi[j], k)) ∈ S1 do
41: EMMTab[k]← Enc(Ke, indi[j]), y, y

′

42: for t = 0 to 2 do
43: if FKd(wi||j||t) ̸= k then
44: if EMMTab[FKd(wi||j||t)] = null then
45: EMMTab[FKd(wi||j||t)]← {0, 1}|γ|

46: EMMTab[k]← EMMTab[k]⊕EMMTab[FKd(wi||j||t)]
47: for ((wi, indi[j], k)) ∈ S2 do
48: XMM[k]← h1(KH , indi[j])
49: for t = 0 to 2 do
50: if pos ̸= k then
51: if XMM[pos] = null then
52: XMM[pos]← {0, 1}|γ|

53: XMM[k]← XMMTab[k]⊕XMM[pos]

// Pad with dummies
54: for j ∈ [|EMMTab|] do
55: if EMMTab[j] = null then
56: EMMTab[j]← {0, 1}|γ|

57: if XMM[j] = null then
58: XMM[j]← {0, 1}|γ|

59: K ← (Kd,Ke,KI ,KW ,KZ ,KZ′ ,KH)
60: EXMM← (EMM,XMM)
61: return (K, EXMM)

• XMM encryption: The encryption process for XMM is
similar to that of EMM. However, to prevent the server
from distinguishing real hash entries from fake ones,
the mapping positions in XMM are obfuscated by the
hash function h0(xlist[i][j]||t). Furthermore, a different
hash function h1 is performed on the identifier indi[j]
to further hide the underlying data. Finally, the client
sends the key set K along with the encrypted table
EXMM← (EMM,XMM) to the server.

Search(K, q(w1, w2, Tab1, Tab2, attr∗), EXMM) →
(MRw): As depicted in Algorithm 2, the search algorithm is
jointly executed by the client and server. The client inputs
a table join query q and the key set K, while the server,
inputs the set of EXMMs. The outputs are two sets of
identifiers MRw. An illustrative example is shown in Fig. 4b.
Given query keywords wA,1 and wB,1, the client derives keys
(Kd,KZ ,KZ′) to generate search tokens (tok1, tok2) and
arrays of join tokens (xtoken1, xtoken2). The server uses
these tokens to retrieve ciphertext sets EYwi

containing blind
values, compute candidate xtag values, update positions post
in the Bloom filter, and return ciphertext sets CV and BF.
Finally, the client decrypts CV with Ke, verifies matches via
BF, and outputs the valid result. The Search algorithm is

described in detail as follows:

• Step 1. Search token generation: (1) The client derives
keys Kd, KZ and K ′

Z from the set of symmetric keys K
to generate tokens. (2) Search tokens (tokw1

and tokw2
)

are generated for the input attribute-values w1 and w2.
The cPRF function F.Cons is adopted for the generation,
which takes Kd as the input key. (3) Next, all indices j in
the range [1, ℓmax] are iterated. For each j, the join token
arrays xtokenTab1 [j] and xtokenTab2 [j] are computed
with the the PRF function Fp:
xtokenTab1 [j] = Fp(KZ′ , w1||j) + Fp(KZ , w2||0)
xtokenTab2 [j] = Fp(KZ′ , w1||0) + Fp(KZ , w2||j)

(6)

(4) Finally, the client aggregates the computed search
tokens and join tokens (tokw1 , tokw2 , xtokenTab1 ,
xtokenTab2). The results are sent to the server for further
processing.

• Step 2. Search operations: (1) Upon receiving the
search tokens, the server generates FKd

(wi||j||t) using
the F.Eval function. (2) Then, the set of ciphertexts EYwi

containing y are updated by the XOR results of the
encrypted FKd

(wi||j||t) and EYwi
[j]. (3) Subsequently,

an encrypted value (ei) is derived from EYwi
to form

the ciphertext sets CV. (4) To get post, the xtag1 and
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Algorithm 2 The Search of JXTMM

Search: (K, q(w1, w2, Tab1, Tab2, attr
∗); EXMM)

Client (Search token generation):
Input: (K, q)
Output: (tokw1 , tokw2 , xtokent1 , xtokent2)

1: (Kd,KZ ,K
′
Z)← K

2: tokw1
← F.Cons(Kd, w1), tokw2

← F.Cons(Kd, w2)
3: xtokenTab1 , xtokenTab2 ← ∅
4: for j ∈ [ℓmax1 ] do
5: xtokenTab1 [j] = Fp(KZ′ , w1||j) + Fp(KZ , w2||0)
6: for j ∈ [ℓmax2

] do
7: xtokenTab2 [j] = Fp(KZ′ , w1||0) + Fp(KZ , w2||j)
8: return (tokw1

, tokw2
, xtokent1 , xtokent2)

Server (Search operations):
Input: (K, q, tokw1

, tokw2
, xtokent1 , xtokent2 , EXMM)

Output: CV, BF, {Hq}q∈[c])
1: EYw1 ,EYw2 ,CV← ∅
2: (Kd)← K
3: (EMMTab1 ,EMMTab2 ,XMM)← EXMM
4: BF← 0b, {Hq}q∈[c] : {0, 1}Ψ → [b]

// Search sets containing encrypted and blind values
5: for j ∈ [ℓmax1

] do
6: for t ∈ [0, 2] do
7: FKd

(w1||j||t) ← F.Eval(tokw1,j||t)
8: EYw1

← EYw1
[j] ⊕ EMM[FKd

(w1||j||t)]
9: for j ∈ [ℓmax2 ] do

10: for t ∈ [0, 2] do
11: FKd

(w2||j||t) ← F.Eval(tokw2,j||t)
12: EYw2

← EYw2
[j] ⊕ EMM[FKd

(w2||j||t)]

// Compute and store cross-tags
13: for j1 ∈ [ℓmax1

] do
14: (e1, y1, y

′
1)← EYw1

[j1]
15: xtag1 = xtokenTab1 [j1] + y′1

16: for j2 ∈ [ℓmax2
] do

17: (e2, y2, y
′
2)← EYw2

[j2]
18: CV ← (e1, e2)
19: xtag2 = xtokenTab2 [j2] + y2
20: for t ∈ [0, 2] do
21: post = h0(xtag1 + xtag2||t)
22: for q ∈ [c] do
23: BF[Hq(XMM[post])]← 1

24: return (CV, BF, {Hq}q∈[c])

Client (Decryption & verification):
Input: (K, q, CV, BF, {Hq}q∈[c])
Output: (MRw1

, MRw2
)

1: (Ke,Kd,KH)← K
2: (w1, w2, Tab1, Tab2, attr

∗)← q
3: Rw,MRw ← ∅

// Decrypt the encrypted result sets
4: for j1 ∈ [ℓmax1

] do
5: if Dec(Ke,CV[j1].e1) ̸= ⊥ then
6: for j2 ∈ [ℓmax2

] do
7: if Dec(Ke,CV[j2].e2) ̸= ⊥ then
8: Rw = Rw∪{Dec(Ke,CV[j1].e1), Dec(Ke,CV[j2].e2)}

// Check the membership
9: for (val1, val2) ∈ Rw do

10: tmp← true
11: for q ∈ [c] do
12: xkv1 ← h1(KH , val1), xkv2 ← h1(KH , val2)
13: if BF[Hq(xkv1)] ̸= 1 || BF[Hq(xkv2)] ̸= 1 then
14: tmp← false
15: Break
16: if tmp← true then
17: MRw ← (val1, val2)

18: return MRw

xtag2 are calculated by the join tokens and the yi, y
′
i

from EYwi
:
xtag1 = xtokenTab1 [j] + y′1

xtag2 = xtokenTab2 [j] + y2

post = h0(xtag1 + xtag2||t)
(7)

(5) The bloom filter BF is updated based on the
XMM[post], which are further processed by the hash
function {Hq}q∈[c]. (6) Finally, the server returns the
encrypted value sets CV, the bloom filter BF, and the
set of hash values {Hq}q∈[c] to the client.

• Step 3. Decryption & verification: (1) Upon receiving
CV from the server, the client decrypts the identifiers
to obtain Rw. (2) Each identifier in Rw is verified to
determine whether it satisfies the join conditions:

BF[Hq(h1(KH , val))] = 1, val ∈ Rw (8)

Then, the satisfied ones are added to the result sets MRw.
(3) Finally, the record identifiers from MRw is obtained.

VI. SECURITY ANALYSIS

A. Leakage Analysis

As mentioned in Section IV, the security of our proposed
scheme is determined based on the leakage function. There-
fore, before analyzing the security, we first define the leakage
L = (LSetup,LSearch) of the JXTMM scheme as follows:

(1) During the setup phase, the scheme reveals 1.23n + β
encrypted attribute-value pairs, along with blind values and
hash values, such that LSetup = dsize(MM) = n. (2) For
queries within the encrypted multi-map, it exposes query
equality qeq and the maximum volume length mrlen by
analyzing the search tokens and results. (3) Additionally, to
handle the public attribute attr∗ set for table join queries, it
leads to the leakage of the join attribute distribution pattern
jd. (4) Furthermore, the conditional intersection pattern ip,
i.e., LSearch = (qeq, mrlen, jd, ip), is also leaked.
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Algorithm 3 Simulator of JXTMM

S.SimSetup

Input: (1λ, dsize)
Output: (⊥, EXMM)

1: n← dsize
2: EMM,XMM ← ∅, where |EMM|=|XMM|=⌊1.23n⌋+β
3: for i = 0 to |EMM| do
4: e

$←− {0, 1}λ

5: (y, y′)
$←− Z∗

p

6: EMM[i]← (e, y)

7: XMM[i]
$←− {0, 1}λ

8: EXMM ← (EMM, XMM)
9: return (⊥, EXMM)
S.SimSearch

Input: (1λ, qeq, mrlen, jd, ip)
Output: (State, State[ψ(qj)])

1: Using qeq(ψ(q1), ψ(q2), ..., ψ(qj)) to analyze ψ(qj)

2: wj,1, wj,2 ← ψ(qj)
3: for i = 1 to j do
4: wi,1, wi,2 ← ψ(qi)
5: if wi,1 = wj,1 then
6: State[ψ(qj)][wj,1]← State[ψ(qi)][wi,1]

7: if wi,2 = wj,1 then
8: State[ψ(qj)][wj,1]← State[ψ(qi)][wi,2]

9: if wi,1 = wj,2 then
10: State[ψ(qj)][wj,2]← State[ψ(qi)][wi,1]

11: if wi,2 = wj,2 then
12: State[ψ(qj)][wj,2]← State[ψ(qi)][wi,2]

13: if State[ψ(qj)][wj,1] = null then
14: State[ψ(qj)][wj,1]

$←− {0, 1}λ

15: if State[ψ(qj)][wj,2] = null then
16: State[ψ(qj)][wj,2]

$←− {0, 1}λ

17: return (State, State[ψ(qj)])

B. Security Proof

To demonstrate the JXTMM is adaptive L-secure and
volume-hiding under the leakage function, we proceed the
security proof with two theorems as described below:

Theorem 1. If the F is a secure pseudorandom function
and (Enc, Dec) is a standard IND-CPA secure symmetric-
key encryption scheme, the JXTMM scheme is L-semantically-
secure against adaptive attacks, where L = (dsize, (qeq,
mrlen, jd, ip)) is the leakage function defined above.

Proof. To prove JXTMM is adaptively secure, we con-
struct a simulator S consisting of SimSetup(1λ, dsize) and
SimSearch(1λ, qeq, mrlen, jd, ip) as shown in Algorithm 3.
With the simulator S, we need to further demonstrate the
probability of output ‘1’ in the real game Real

∑
A (λ) is

negligibly different from that in the ideal game Ideal
∑
A,S,L(λ)

to any adversary A. Here,
∑

is the JXTMM scheme. In the
following, 8 games are described in details to formally prove
the computational indistinguishability between the real and
ideals games:

Game G0: The first game G0 is identical with the real
JXTMM Real

∑
A (λ), since G0 straightforwardly performs our

proposed scheme. Thus we have:

Pr[G0 = 1] = Pr[Real
∑
A (λ) = 1]. (9)

Game G1: G1 is almost the same to G0, except the
evaluations of Fp(KZ , ·), Fp(KZ′ , ·), Fp(KI , ·), Fp(KW , ·)
are substituted by outputs from distinct random functions or
chosen from the relevant domain and range.

The distinguishing advantage between G0 and G1 is equal
to that of PRF against an adversary with at most N calls to
F . Therefore, there exists an efficient adversary B1 to achieve
the advantage, then we have:

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 4·AdvPRF
F,B1

(λ). (10)

Game G2: G2 is identical to G1, except the ciphertexts
e and xtag are encrypted with a random value {0, 1}λ to
replace the actual identifier used in the real game. Let the

number of encrypt steps be polynomialpoly(λ), the advantage
of adversary B2 can be formalized as:

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ poly(λ)·AdvIND−CPA∑
,B2

(λ).
(11)

Game G3: G3 is nearly the same as the prior G2, with the
exception the blind values y, y′ are randomly chosen from Z∗

p .
Since the changes introduced in G1, a random function Fp(·,·)
is selected to determine the parameters z, zz, zcnt, zzcnt are
uniformly and independently distributed. Thus, the values of
y, y′ are also uniform and independent, since y = xind −
(z+ zcnt) and y′ = xind− (zz+ zzcnt). Finally, substituting
y, y′ with random values will not alter the distribution of the
resulted game, then we can conclude that:

Pr[G3 = 1] = Pr[G2 = 1]. (12)

Game G4: G4 is almost identical to the game G3, with the
exception it replaces the hash functions h0(·) and h1(KH , ·)
with random function. Based on the security of hash function,
we have:

Pr[G4 = 1] = Pr[G3 = 1]. (13)

Game G5: G5 is distributionally identical to G4 except it
replaces the encryption function Enc in XOR filter with a
random function. By the secure characteristics of AES, G5

and G4 are computed indistinguishable. Thus, we have:

Pr[G5 = 1] = Pr[G4 = 1]. (14)

Game G6: G6 is exactly like G5, except the outputs of the
symmetric encryption on retrievals are replaced by random
strings. Due to the same distribution outputs, G5 and G6 are
distinguishable with negligible probability, i.e.,

Pr[G6 = 1]− Pr[G5 = 1] ≤ AdvIND−CPA
E,B3

(λ). (15)

Game G7: In G7, instead of using the cPRF function directly,
it chooses a randomized function. According to the secure
characteristics of cPRF, G6 and G7 are indistinguishable, i.e.,

Pr[G7 = 1]− Pr[G6 = 1] ≤ ·AdvPRF
F,B1

(λ). (16)

It is significant to mention that the simulator S takes (1λ and
the leakage function L = (dsize, (qeq, mrlen, jd, ip)) as
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inputs and outputs a simulated EXMM along with a simulated
state list State to the adversary A. Since the process of
building EXMM are identical to those in G7, we can come to
the conclusion that,

Pr[Ideal
∑
A,S,L(λ) = 1] = Pr[G7 = 1]. (17)

Finally, the Theorem 1 is proved.

Theorem 2. The leakage function L = (dsize, (qeq, mrlen,
jd, ip)) for the JXTMM scheme is volume-hiding.

Proof. To formalize the volume-hiding, we give its definition
through a leakage function as follows:

Definition 3. A leakage function L = (LSetup, LSearch) is
volume-hiding, if and only if, for any adversary A and 1 ≤
ℓmax ≤ n,

pA,L
0 (n, ℓmax) = pA,L

1 (n, ℓmax) (18)

where, θ ∈ {0, 1}, and pA,L
θ (n, ℓmax) denotes the probability

of A outputs ‘1’ in a game GA,L
θ (n, ℓmax).

Details of the game GA,L
θ (n, ℓmax) are as follows:

(1) Given a total of n attribute-value pairs and a maximum
volume length ℓmax, the adversary A is capable of generating
two distinct signatures: S0 = {(wi, ℓ0)(wi))}i∈[n] and S1 =
{(wi, ℓ1)(wi))}i∈[n], where both signatures share the same n
and ℓmax.

(2) With these two signatures S0 and S1, a challenger
C randomly chooses one of them, denoted asSθ. This is to
construct a multi-map MMθ composed of randomly chosen
attribute-value and identifiers. Thus, the multi-map MMθ is
then encrypted, and C proceeds to send the encrypted setup
information LSetup to A.

(3) The adversary A selects two distinct join attributes
ψ(w1), ψ(w2) for the quires. In response, the C returns the
search-related information LSearch to A.

(4) Finally, A outputs a bit b ∈ {0, 1}.
At last, the proof is given as follows:

• The leakage function is given as L = (LSetup, LSearch)
= (dsize, (qeq, mrlen, jd, ip)).

• The adversary A generates two multi-map signatures S0,
S1, each with size n and a maximum volume length ℓmax,
and presents them to the challenger C.

• C then randomly selects one of these signatures to con-
struct both an encrypted multi-map and a hashed multi-
map, initiating an interaction with the adversary A.

• Then for JXTMM, the setup leakage LSetup includes
the data size dsize(MM) = n, while the search leak-
age LSearch includes the maximum volume length
mrlen(MM) = ℓmax. The leakage functions of LSetup

and LSearch are identical for both signatures, due to the
following reasons:
(1) It deserves to be noted that the the query equation qeq
is independent of the multi-map construction and that the
leakage of data size dsize and maximum volume length
mrlen is the same for both multi-map signatures.

(2) Moreover, the ip leakage leaks only to the challenger,
not to the adversary; the jd leakage is essentially query-
invariant, thus it is considered benign.

• As a result, the adversary A cannot distinguish the dif-
ference between any two signatures, i.e. pA,L

0 (n, ℓmax) =
pA,L
1 (n, ℓmax). Therefore, it can be inferred that JXTMM

scheme is capable to hide volume.

VII. COMPLEXITY ANALYSIS

In the following, we theoretically compare our scheme
JXTMM with the single keyword volume-hiding scheme (i.e.
XORMM [17]), the standard conjunctive queries scheme (i.e.
OXT [12]) and the table join queries scheme (i.e. JXT [13],
TNT-QJ [14], OTJXT [15], FBJXT [16]) concerning storage
cost, computational and communication overhead.

For simplicity, we consider a database including two ta-
bles, Tab1 and Tab2, each with n multi-maps consisting of
attribute-value pairs and corresponding identifiers, m records,
and T join attributes. Assume a query involving two attribute-
value pairs, w1 and w2, which is performed on the join of Tab1
and Tab2 with based on the attribute attr∗. Table I provides
a comparison summary.

A. Storage Cost

To start, we analyze the storage costs for XORMM, OXT,
JXT, TNT-QJ, OTJXT, FBJXT and JXTMM. For JXT, TNT-
QJ, OTJXT, FBJXT and JXTMM, when performing table join
queries, the TSet (EMM) and XSet (XMM) structures are built
separately for each table. Therefore, the overall cost of storage
for these queries is basically identical the combined cost of
storing storage each table independently.

Specifically, based on the construction of a XOR filter [30],
XORMM maps a multi-map of size n to the XOR filter by
encrypting and padding dummy values. Therefore, the storage
cost of the XORMM scheme is 1.23n·ev + β.

OXT generates the TSet and XSet to form an encrypted
database. The number of entries stored in TSet and XSet
corresponds to the number of attribute-value pairs and their
identifiers. Specifically, the encrypted value ev and the blind
value y are stored in TSet, while the xtag value xt is stored
in XSet. Therefore, its storage cost is (xt+ ev + y)n.

JXT is similar to OXT in that it produces TSet and XSet
to form the encrypted database. The TSet consists of tuples
containing n encrypted values ev and blind values y, while the
XSet consists of xtags that store all possible combinations
of record identifiers and their associated join attribute-value
pairs, with a storage size of m·T . Thus, the total storage cost
of JXT is (ev + y)n + xt·m·T . Similar to JXT, both TNT-
QJ and FBJXT employ TSet and XSet structures to organize
the encrypted database. Consequently, their storage costs can
also be expressed as (ev+ y)n+xt·m·T . In contrast, OTJXT
adopts a novel data encoding strategy that eliminates the need
for an XSet, relying solely on the TSet. As a result, its storage
cost reduces to (ev + y)n · T .

JXTMM generates the encrypted multi-maps, EMM and
XMM. In particular, for each attribute-value pair in the table,
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EMM maintains the encrypted identifiers and their blind
values, while XMM stores the hash values of xtags. Both have
a storage size proportional n. Therefore, the total storage size
of JXTMM is 1.23n·(ev + y + h) + β.

B. Computational Overhead

The computational overhead involved in performing a
search is now asymptotically analyzed. When executing a
query for a single keyword, the number of matched results
in the XORMM scheme is determined by the underlying data
structure’s query communication complexity. Therefore, both
its client and server computational overheads primarily depend
on the maximum volume length (ℓmax).

In the context of a conjunctive query supporting multiple
keywords using OXT, the client performs O(1) computations
to generate the search token for w1, while the number of com-
putations required to generated search tokens for the remaining
keywords (w2, · · · , wx) is x·ℓ1. Consequently, the client’s
computational overhead is O(x·ℓ1). The server’s computation
is divided into two steps. Initially, the search token generated
for w1 by the client is used to perform a TSet lookup,
which has a computational complexity of O(ℓ1). Subsequently,
O(x·ℓ1) computations are performed to determine whether the
search tokens generated for the remaining keywords belong
to XSet. Therefore, the total computational complexity of the
server is O(ℓ1) +O(x·ℓ1).

When performing a join search on two tables, Tab1 and
Tab2. In JXT, the client generates search tokens (stag) for w1

and w2. This is achieved by executing the stag-generation al-
gorithm for the TSet by using O(1) invocations. The client also
computes join tokens, with the number of such computations
being ℓ1+ℓ2. Hence, the computation overhead is O(ℓ1+ℓ2).
On the server side, TSet lookups are performed for w1 and
w2, with a computational complexity ℓ1 + ℓ2. Subsequently,
the server calculates and verifies the candidate xtag entries
associated with each pair of join tokens, with a computational
complexity ℓ1ℓ2. Therefore, the total computational overhead
for the server is O(ℓ1+ℓ2)+O(ℓ1ℓ2). FBJXT is similar to JXT,
where the client computation overhead is O(ℓ1 + ℓ2), and the
server computation overhead is O(ℓ1 + ℓ2)+O(ℓ1 · ℓ2). TNT-
QJ, due to the meta-keyword transformation, incurs a client
computation overhead of O(x · n′

+ x · ℓmax). On the server
side, TNT-QJ performs SFMST-based searches, which lead to
a server computation overhead of O(logn) + O(ℓ1 · ℓ2). In
contrast, OTJXT has the same client computation overhead as
JXT, while on the server side the candidate computation during
result retrieval is linear, yielding a complexity of O(ℓ1 + ℓ2).

In JXTMM, the client makes O(1) calls to the F.Cons
algorithm of cPRF to compute the search tokens (tok) for
w1 and w2. The client then computes the join tokens. This
step repeats ℓmax1

and ℓmax2
times, respectively. After that,

the client performs decryption and membership checks ℓmax1
·

ℓmax2 times. Thus, the client’s total computational overhead is
O(ℓmax1 + ℓmax2 + ℓmax1 · ℓmax2). The server’s computation
consists of two parts. First, it uses the client’s search tokens to
retrieve the encrypted result sets for w1 and w2.This requires
O(ℓmax1

+ ℓmax2
) computations. Second, it computes the hash

values of the xtag entries corresponding to the join tokens

and stores them in the bloom filter. This requires O(ℓmax1 ·
ℓmax2

)operations. Therefore, the server’s total computational
overhead is O(ℓmax1

+ ℓmax2
) +O(ℓmax1

· ℓmax2
).

C. Communication Overhead

Next, we analyze the communication overhead involved in
executing a search.

For a single keyword query, the client sends only a token
to the server, resulting in a communication complexity of
O(1). The server responses with an encrypted result set of
size O(ℓmax), making the total communication complexity
O(ℓmax).

In the case of conjunctive queries involving multiple key-
words using OXT, the client sends O(x·ℓ1) terms to the server,
and the server responds with O(x·ℓ1) terms. Consequently, the
total communication complexity is O(x·ℓ1). When executing
a join search on two tables, Tab1 and Tab2.

In JXT, the client sends O(ℓ1 + ℓ2) terms to the server,
while the server’s response contains O(|DB(q)|) terms. There-
fore, the overall communication complexity is O(ℓ1 + ℓ2) +
O(|DB(q)|)). For TNT-QJ, the client uploads O(x·n′

) tokens,
and the server returns O(ℓ1+ ℓ2) results, leading to an overall
communication complexity of O(x ·n′

)+O(ℓ1+ ℓ2). For FB-
JXT, both the client and the server exchange O(ℓ1+ℓ2) terms,
resulting in a total communication complexity of O(ℓ1+ℓ2). In
the case of OTJXT, the client sends O(ℓ1+ℓ2) join tokens, and
the server replies with O(|DB(q)|) encrypted results, yielding
a total communication complexity of O(ℓ1+ℓ2)+O(|DB(q)|).

In JXTMM, the client sends the search tokens and join
tokens to the server, with a total size of O(ℓmax1

+ ℓmax2
). The

server returns the candidate value set of size O(ℓmax1
· ℓmax2

),
along with the bloom filter of size O(BF).Therefore, the
overall communication complexity is O(ℓmax1 + ℓmax2) +
O(ℓmax1

· ℓmax2
) + O(BF).

VIII. PERFORMANCE EVALUATION

In this section, we compare the more fundamental and
representative join query JXT [13] scheme with our proposed
JXTMM scheme to access its performance. We do not consider
XORMM and OXT in this section since their search type are
single keyword and conjunctive search, do not support join
table queries.

The setup of the two experiments is first described, and then
the overhead of the setup and query phases are shown by the
simulation results.

A. Experiment Setup

We conduct our experiments on a machine equipped with
an Intel i7-13700 @ 5.0GHz and 16GB of RAM. Our imple-
mentation of the proposed JXTMM scheme, along with the
baseline JXT scheme for comparison, is developed in Java.
Cryptographic operations, including PRFs and hash functions,
are performed using JDK libraries such as AES and SHA-256.

We use the TPC-H benchmark dataset in our experiments.
This dataset is widely adopted for testing database systems
under complex analytical queries and large-scale data. Thus,

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3627000

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 31,2025 at 16:04:33 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 20XX 13

following common practice in encrypted database research
[46], we evaluate on the TPC-H benchmark with the customer
and orders tables with scale factors of 0.1, 0.2, 0.3, 0.4, and
0.6. The CUSTOMER and ORDER tables consist of 8 and
9 attributes, respectively, and both include the join attribute
custkey. Under these settings, the CUSTOMER table contains
15,000, 30,000, 45,000, 60,000, and 90,000 rows, respectively,
while the ORDER table contains 150,000, 300,000, 450,000,
600,000, and 900,000 rows. We extract only a subset of
columns to reduce irrelevant complexity while keeping the
attributes needed for evaluation. For tables with a scale factor
of 0.01, we add a synthetic attribute to control search selec-
tivity. Specifically, 1% of the rows are assigned value 1, 2%
value 2, 4% value 3, and 8% value 4. This setup allows us
to simulate different filtering levels and evaluate the proposed
scheme under varying selectivity.

Specifically, the TSet in JXT scheme is constructed using
an inverted index, while the XSet in the JXT scheme is
created as a dynamic array. Finally, we implement the cPRF
by constructing a GGM tree. Based on the parameter settings
in XORMM [17], we set β = 8 to improve the success
probability of the dissimilarity filter and required storage.

We present a comprehensive analysis of the setup and search
overhead in JXT and JXTMM. In particular, we begin by
assessing the storage size and the time required to create
encrypted tables across different data sizes. Subsequently,
to access the effect of the resultant volume, we compare
the search time costs of the two schemes across different
correlation volume lengths.

B. Evaluation and Comparison

Storage Cost. Each table is stored separately in both JXT
and JXTMM. The total storage overhead equals the sum of
all encrypted tables. Thus, the key metric is the overhead for
each table. In JXT, the overhead comes from TSet and XSet,
whereas in JXTMM, it comes from EMM and XMM. The
main difference lies in construction: JXTMM uses XOR filters,
while JXT builds TSet with an inverted index and XSet with a
dynamic array. For a multi-map of size n, JXTMM generates
an EMM of size 1.23n + β. As a result, JXTMM consumes
more storage than JXT, as shown in Fig. 5. However, this
additional cost enables both volume-hiding and result-hiding.
The trade-off is reasonable since the overall performance is
not significantly affected.

Fig. 5: Storage overhead. Fig. 6: Setup time.

Setup Evaluation. We next evaluate the setup efficiency
of table join queries under different data sizes. In JXTMM,
ciphertexts are generated using multi-map mapping with XOR
filters, while those in JXT are generated with AES. As shown

in Fig. 6, JXTMM scheme incurs slightly higher overhead.
In practice, setup is performed only once, and the extra cost
remains within an acceptable range. Thus, the setup efficiency
of JXTMM is practical.

Search Evaluation. We analyze the search efficiency across
different dataset sizes and search selectivity.

(1) Effect of data size. We first evaluate the time cost of
table join queries for both JXTMM and JXT across different
dataset sizes. For each dataset, we query 30 randomly selected
keywords. As shown in Fig. 7, the search time of both JXT
and JXTMM increases with the data size. This is because
larger datasets increase both keyword volume (ℓ1,ℓ2) and max-
imum volume (ℓmax). However, JXTMM exhibits a narrower
fluctuation range: its performance depends only on ℓmax,
whereas JXT depends on varying (ℓ1,ℓ2). This makes JXTMM
more stable and scalable in large-scale encrypted databases.
The stability demonstrates the robustness of JXTMM against
growing data. Since JXTMM consistently shows stable search
times regardless of dataset size, it provides more practical
efficiency in large-scale encrypted databases.

Fig. 7: Search time with data size.

(2) Effect of selectivity. Next, we query keywords with vary-
ing search selectivities to further analyze the search cost. We
measured the time cost in each phase: token generation (search
and join tokens), search execution, and result decryption.

Specifically, Fig. 8a compares the time to generate tokens
for the JXTMM and JXT schemes with varying data sizes.
The token generation time of both schemes remains largely
unaffected by search selectivity. For a more detailed com-
parison, Table III reports the time required for generating
search and join tokens under the two schemes. In search token
generation, JXTMM achieves slightly faster performance than
JXT because it employs a cPRF function. In join token
generation, the time cost of JXTMM depends only on ℓmax.
Although the token generation time of JXT is theoretically
related to ℓ1 and ℓ2, the client cannot determine their exact
values during the process and must also rely on ℓmax. As a
result, the join token generation time remains unchanged for
both schemes.

TABLE III: Generate Token Time Cost (ms).

Search Selectivity Search Token Join Token
JXT JXTMM JXT JXTMM

1% 0.034 0.016 7.74 7.91
2% 0.033 0.016 7.90 7.81
4% 0.033 0.016 7.81 7.99
8% 0.034 0.016 7.83 7.81

Fig. 8b illustrates the comparison of time costs during the
server search phase, revealing that the time cost of JXT varies
with search selectivity, i.e., the volume of queried keywords,
while that of JXTMM remains nearly constant. Moreover,
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once search selectivity exceeds a certain threshold, JXTMM
achieves higher server-side query efficiency than JXT, owing
to its use of bloom filters to optimize search performance.

Fig. 8c compares the client decryption times for both
schemes. The client decryption times of both JXT and
JXTMM increases with search selectivity. In JXTMM, the
verification time required to check whether the result sets sat-
isfies the query conditions is also affected by search selectivity.
Moreover, JXTMM incurs higher decryption costs than JXT
because it requires additional verification during decryption to
ensure that the result sets satisfies the query conditions.

Fig. 8d shows the total execution time of join queries. The
cost of JXT grows rapidly as selectivity increases, whereas
that of JXTMM grows more slowly. Once search selectivity
reaches a certain level, the search time of JXT is exceeds
that of JXTMM. This stability further demonstrates JXTMM’s
robustness, as its performance is less affected by increasing
selectivity. In addition, JXTMM not only maintains consistent
search performance as selectivity increases but also provides
a clear advantage in real-world applications, where high se-
lectivity occurs frequently.

(a) Client generates tokens (b) Server searches

(c) Client decrypts (d) Total search

Fig. 8: Comparison of the search time cost with different
search selectivity.

(3) Detailed max selectivity test. To further evaluate the
impact of maximum selectivity on JXTMM search time, we
configured each table with a maximum search selectivity of
8%, 16%, 32%, and 64%, while keeping the corresponding
value fixed at 1. The results, shown in Fig. 9, indicate that
the query time of JXTMM increases with higher maximum
selectivity, i.e., ℓmax. As ℓmax grows, more dummy entries are
introduced, requiring both the client and the server to process
and decrypt a larger number of matching entries.

(a) Bandwidth with data size. (b) Bandwidth with search selectivity.

Fig. 11: Communication bandwidth.

Fig. 9: Search time with
maximum search selectivity.

Fig. 10: Throughput with data
size.

Network Condition Evaluation. (1) Throughput. We evalu-
ated the query throughput of JXTMM and JXT across different
data scales, measured in transactions per minute (TPM).
The experimental conditions were kept consistent, with each
dataset size using 30 randomly selected keywords. As shown
in the Fig 10, the throughput of both schemes decreased as
the data scale increased. This is because larger data scales
lead to higher values of ℓmax, ℓ1 and ℓ2, which in turn require
longer search times for each query, thereby reducing the total
number of queries processed per minute. Notably, JXTMM
outperformed JXT in terms of throughput on smaller datasets.
This suggests that JXTMM is more efficient when the number
of query results is relatively small. Although, as the database
size increases, the query tasks are generally dominated by data
volume, causing the throughput of both schemes to converge,
the initial advantage of JXTMM highlights its efficiency. This
demonstrates that in environments where the query result scale
is not excessively large, JXTMM exhibits high responsiveness
and delivers superior practical performance.

(2) Communication Cost. We evaluated the communication
overhead of JXT and JXTMM under varying data sizes and
search selectivities. As illustrated in Fig. 11, JXT achieves
higher communication efficiency in both cases. This is be-
cause, in JXTMM, bloom filters are employed to securely
store join conditions, and dummy values are introduced during
transmission to prevent result leakage. These steps increase
communication cost but are necessary for security. As shown
in Fig. 11a, communication overhead grows with data size due
to increases in ℓmax, ℓ1 and ℓ2. In contrast, Fig. 11b shows
that JXT’s overhead rises steadily with search selectivity, while
JXTMM remains almost constant, since its communication
depends only on ℓmax, which is fixed in this experiment.
Although JXTMM incurs slightly higher communication cost,
its stability across varying selectivities and data sizes makes

This article has been accepted for publication in IEEE Transactions on Information Forensics and Security. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2025.3627000

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 31,2025 at 16:04:33 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 20XX 15

it more practical for real-world applications.

IX. LIMITATIONS AND FUTURE WORK

In this section, we discuss the limitations of JXTMM as
well as the research directions worth further exploration. We
summarize some of these below.

Lack of Dynamic Support. JXTMM is designed for static
databases and does not support dynamic operations such as
insertion, deletion, or modification of records after the initial
setup. This static assumption is common in many SSE schemes
[14], [15] as it simplifies design construction and reduces over-
all complexity. However, it inevitably limits its applicability in
practical scenarios where datasets are frequently updated. The
limitation mainly arises from the use of the XOR filter [30] as
the core data structure: because each element is represented
across multiple positions, efficient insertions and deletions are
inherently difficult. Future work may explore integrating dy-
namic data structures into the encrypted multi-map framework,
such as dynamic cuckoo hashing [47], oblivious key-value
stores [48], or random bucket techniques [49]. These structures
could be adapted to enable secure incremental updates while
preserving strong security guarantees. Developing a dynamic
variant of JXTMM is therefore an important direction for
future research.

Applicability in Multi-User Environments. JXTMM cur-
rently supports only a single-user setting. In this model, a
single client generates search tokens and interacts with the
server. However, many applications in practice require multi-
ple authorized users to access the same encrypted database.
Recently, Li et al. [16] proposed a dynamic and secure join
query protocol for multi-user environments. Wang et al. [50]
presented SMKSE, which reduces pattern leakage in such
settings. These techniques such as key-homomorphic PRFs
[16] or SMKSE’s blinding-factor and garbled bloom filter
[50]could be integrated into JXTMM to enable controlled
multi-user access. Extending JXTMM in this direction is an
important task for future research.

Concurrency Query Execution. Due to the use of a bloom
filter (BF) to encode candidate join pairs tag during the server-
side search procedure, the bit array must be updated based
on query-specific tokens and cross-tags. As the BF is tightly
coupled to the in-flight query, simultaneous updates from
multiple queries or threads would interfere with each other,
leading to cross-query contamination and unverifiable mem-
bership checks. Future work could enable safe concurrency
by isolating per-query state, for example by assigning each
query a disjoint namespace to prevent cross-talk. Another
direction is to explore bloom filter variants that naturally
support parallelism, such as partitioned bloom filters [51],
which divide the bit array into disjoint segments and assign
each hash function to a separate partition, thereby simplifying
concurrent updates. We leave the design of a concurrency
pattern-hiding join protocol for JXTMM to future work.

X. CONCLUSION

In this paper, we investigate secure table join queries in
encrypted relational databases without requiring join pre-
computation. We propose an efficient volume-hiding and

result-hiding JXTMM scheme to support table join queries.
Building on table join queries, our scheme mitigates leakage
that may lead to volume and result attacks. Moreover, JXTMM
improves the efficiency of table join queries in certain aspects.

However, JXTMM is applicable only to static databases,
and the design of dynamic volume-hiding EMMs that support
table join queries remains a challenging problem.
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