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Abstract—Mobile crowdsensing (MCS) can promote data acquisition and sharing among mobile devices. Traditional MCS platforms

are based on a triangular structure consisting of three roles: data requester, worker (i.e., sensory data provider) and MCS platform.

However, this centralized architecture suffers from poor reliability and difficulties in guaranteeing data quality and privacy, even provides

unfair incentives for users. In this article, we propose a blockchain-based MCS platform, namely BlockSense, to replace the traditional

triangular architecture of MCSmodels by a decentralized paradigm. To achieve the goal of trustworthiness of BlockSense, we present a

novel consensus protocol, namely Proof-of-Data (PoD), which leverages miners to conduct useful data quality validation work instead

of “useless” hash calculation. Meanwhile, in order to preserve the privacy of the sensory data, we design a homomorphic data

perturbation scheme, through which miners can verify data quality without knowing the contents of the data. We have implemented a

prototype of BlockSense and conducted case studies on campus, collecting over 7,000 data from workers’ mobile phones. Both

simulations and real-world experiments show that BlockSense can not only improve system security, preserve data privacy and

guarantee incentives fairness, but also achieve at least 5.6x faster than Ethereum smart contracts in verification efficiency.

Index Terms—Blockchain, consensus, mobile crowdsensing, privacy, proof of useful work, verifiable computation
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1 INTRODUCTION

WITH the explosive proliferation of sensors embedded in
mobile devices (e.g., mobile phones), mobile crowd-

sensing (MCS) has become a promising paradigm to collect
large-scale sensory data. MCS systems have gained consid-
erable attention in recent years both in academia and indus-
try [1]. Many MCS applications or systems have been
proposed by researchers, such as SmartRoad [2], TransitLa-
bel [3], and UbiAir [4]. The MCS paradigm makes those
data-driven applications more efficient, flexible, and scal-
able. Besides, there are several MCS platforms successfully

deployed in practice, such as Uber [5], MTurk [6], and
OpenStreetMap [7].

Despite the potential advantages of the MCS data collec-
tion paradigm, there exist many challenges of security, pri-
vacy, and fairness in existing MCS platforms. For example,
it is reported that oBike [8] (a bicycle-sharing operator)
leaked its users’ personal data resulting from a loophole in
the oBike system, which affected users in 14 countries
worldwide. In another incident, Uber China [9] failed to
provide normal services due to a hardware disruption (i.e.,
single point failure), which caused economic losses of pas-
sengers. As to the fairness, Brian et al. [10] pointed out that
MTurk provides unfair incentives that can be biased
towards requesters, and thus workers may get unfair rejec-
tion even if they submitted proper data.

Motivation. The root of these challenges lies in the bar-
riers of assuring trust and reliability guarantee in the cen-
tralized MCS architecture. Fig. 1 shows the traditional
triangular structure of MCS models, in which there are three
roles: crowdsensing platform, requester, and worker. Specifi-
cally, a requester poses tasks to the system and receives sen-
sory data from the platform. Meanwhile, a worker accepts
tasks and submits the collected sensory data to the platform.
The centralized server acts as an agent to fulfill requests
from requesters and workers. In this architecture, the cen-
tralized server serves as a proxy between workers and
requesters, which needs to handle every operation in the
system. Such a centralized MCS model has the following
limitations: (i) Poor reliability. The centralized design of tra-
ditional MCS systems requires a central server to coordinate
all operations and store all collected data at the centralized
storage, consequently increasing the risk of system failure
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due to single point failure or other malicious attacks, e.g.,
Distributed Denial-of-Service (DDoS) attacks. (ii) Privacy-
leakage risk. Since workers and requesters cannot authenti-
cate each other, mutual trust can only rely on the central
server while it may leak the identities of workers and
requesters as well as sensory data accidentally (e.g., single
point failure or malicious attacks) or intentionally (e.g.,
unscrupulous service providers) thereby causing privacy
leakage. (iii) Unfair incentives. In centralized and non-trans-
parent systems, biased third-parties often provide unfair
incentives [10]. Moreover, unscrupulous behaviors known
as free-riding and false-reporting [11] that defraud rewards
could break the fairness of incentives. (iv) Low quality data.
Another important problem in MCS systems is the low
quality of collected data. The raw data reported by workers
of MCS systems may have low quality or anomalous data
due to data redundancy and malicious behaviors [12].

In efforts to solve these problems, Zhang et al. [13] pro-
posed a privacy-friendly image crowdsourcing frame-
work with a data quality guarantee, and Lin et al. [14]
presented an auction-based mechanism, namely SPIM,
for crowdsensing systems to resist Sybil attacks. How-
ever, these studies are still fragile for the single point fail-
ure and malicious attacks due to the centralized system
architecture. Even though a set of distributed and trusted
servers could mitigate these issues to some extent, the
biggest flaw of such a setup is that all security guarantees
are achieved under the premise of the trust to servers.
Similar to the triangular MCS architecture, it is still diffi-
cult to build the trust chain in such non-transparent sys-
tems. The emergence of blockchain technologies has
gained considerable attentions in recent years, which are
promising to build a decentralized and trustless MCS
platform. Although blockchain technologies offer better
options for the practical deployment of MCS systems,
existing studies haven’t solved the aforementioned prob-
lems. For example, Li et al. [9] conceptualized a crowd-
sourcing based on blockchain framework (CrowdBC)
without assuring data quality; Lu et al. [15] designed an
anonymous and accountable blockchain-based crowd-
sourcing system, namely ZebraLancer, for a fair exchange
between data and rewards, but it still relies on trusted

registration authorities. In this work, we aim at generaliz-
ing MCS tasks on top of blockchain systems, so as to enjoy
the privacy, security, fair and trustworthy incentives, and
related properties brought by blockchains. However, new
challenges are emerging when introducing MCS tasks
into the blockchain-based facilities:

� Security versus Energy. Crowdsensing is usually
energy consuming [16], while “rebasing” MCS tasks
onto blockchains makes data collection, computation,
and data transfer of MCS applications even more
resource-hungry. For example, both ZebraLancer and
CrowdBC adopt Proof-of-Work (PoW) [17] as their
consensus protocols, which waste massive computing
resources for “useless” hash calculation. Although
these “useless” computation efforts are indispensable
to ensure the data security and trustworthiness of a
blockchain platform, they cannot directly benefit
MCS tasks while even bringing extra computing con-
sumption. Thus, there needs a non-trivial protocol design
of blockchain to guard the system security against potential
threats while performing beneficial work to facilitate MCS
tasks and reducing energy/resource consumption.

� Privacy versus Transparency. The transparency of
smart contracts in a blockchain system naturally
helps to ensure the integrity of data and incentive
allocations in MCS tasks. However, transparent
smart contracts also expose users to the vulnerabil-
ities of potential information leaks. For example, the
sensory data collected from individual users are sup-
posed to put onto the trust chain while the miners
and other involved users could browse the data, ver-
ify the data authenticity and quality, and incentivize
the data contributors accordingly. Hence, there needs a
verifiable approach to validate the sensory data quality in
an (semi-)automated way while preserving data privacy.

Contributions. To address the above challenges, we pro-
pose a blockchain-based MCS platform called BlockSense,
which inherits the merits of blockchain such as decentraliza-
tion, immutability, and reliability, to achieve a trustworthy,
secure, and fair MCS platform. In BlockSense, MCS tasks
will be published in the form of smart contracts, which are
considered as unforgeable functions deployed on the block-
chain, so that they can execute the MCS tasks according to
the pre-defined rules faithfully. Distinctive from existing
work [9], [15], [18], we codify the data quality detection
algorithm into the smart contracts in a verifiable approach
and leverage miners to validate the sensory data quality. In
summary, we make the following contributions in this
paper:

� We propose a blockchain-based MCS platform,
named BlockSense, to provide a trustworthy plat-
form in trustless environments. BlockSense obsoletes
the triangular centralized architecture of MCS plat-
forms and leverages miners to verify data authentic-
ity and quality. In particular, we present a novel
consensus protocol, named Proof-of-Data (PoD). In
contrast to the “useless” hash calculation in existing
consensus protocols [17], [19], our PoD conducts
effective data validation by miners.

Fig. 1. Traditional triangular MCS structure suffers security, privacy, and
fairness issues.
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� To preserve the privacy of sensory data, we design a
homomorphic data perturbation scheme, which per-
turbs the real values of sensory data while retaining
the temporal features of the original data homo-
morphically. Therefore, miners can reveal the data
quality through validating perturbed sensory data,
thereby protecting the original data from disclosure
to miners during the data verification.

� We have implemented a prototype of BlockSense
and all codes are open-sourced and available at
https://github.com/imtypist/BlockSense. We have
conducted extensive experiments based on the pro-
totype and public sensory datasets. Both theoretical
analysis and experimental results demonstrate that
BlockSense not only achieves a favorable perfor-
mance in system security, data privacy preservation,
and incentives fairness, but also promotes at least
5.6x faster than Ethereum smart contracts in verifica-
tion efficiency.

The rest of the paper is organized as follows. Section 2
introduces preliminaries of this work. Section 3 describes
the threat model. Overview of BlockSense and design
details are presented in Section 4. Sections 5 and 6 present
security analysis and experimental results. We discuss
related works in Section 7, and advantages and limitations
of BlockSense in Section 8. Finally, we conclude the paper in
Section 9.

2 PRELIMINARIES

2.1 Blockchain Model and Smart Contract

Blockchain Model. Blockchain can be considered as a state
machine powered by transactions [20]. A blockchain is ini-
tialized with a genesis state. Writing data on blockchain
causes the state transition of the blockchain, and this tran-
sition is recorded as a transaction. A valid state transition
is triggered through a transaction. And transactions are
collected in the form of block, which will be broadcast, syn-
chronized and confirmed in the decentralized blockchain
network.

Blockchain is a chain of blocks, where each block
includes a set of transactions and the hash value of its par-
ent block. The hash value can be viewed as a form of refer-
ences between blocks, which assures the immutability and
traceability of the blockchain. The blockchain is treated as a
decentralized public database, blockchain nodes (i.e., min-
ers) need to make enough efforts to obtain the rights to pack
a set of transactions into a new block, which is known as
mining blocks. Miners who successfully mine new blocks
will be rewarded tokens in the form of a special transaction.
This process is known as consensus, which guarantees data
consistency of the blockchain. We introduce mainstream con-
sensus protocols in Section 2.2.

Smart Contract. In smart contract-supported blockchain
systems, a transaction can carry arbitrary computation.
Users send transactions containing specific program codes
to miners to deploy or invoke smart contracts. Each miner
that receives the transaction will carry out pre-defined pro-
gram codes in it and verify the legality of the transaction in
the light of the execution results. Due to the consistency and
immutability of blockchain systems, we can assure the

correctness of the results, which allows users to make secure
transactions in a trustless environment.

2.2 Proof-of-X Consensus

Existing consensus protocols can be divided into two cate-
gories: probabilistic consensus and deterministic consen-
sus [21]. The former is usually adopted in public
blockchains, while the latter is used in permissioned block-
chains. Public blockchains that allow anyone to participate
in are more suitable for MCS. Therefore, we mainly focus
on probabilistic consensus algorithms in this section.

Hash-Based Random Oracle. Typical probabilistic consen-
sus algorithms contain Proof-of-Work (PoW), Proof-of-Stake
(PoS) [19] and their variants. We collectively call them
Proof-of-X (PoX) consensus. The PoX consensus can be con-
sidered as a lottery where the likelihood of winning is pro-
portional to the computational investment, but the winner
is not deterministic. Any node may be the first one to suc-
cessfully mine the next block. This randomness can avoid
any one party to control the mining of blocks. Take the PoW
as an example, we can define the mining process as fol-
lows [22]:

ðHashðci; xiÞ < DiÞ ^ ðci � qÞ; (1)

where i denotes the block index; Hashð�Þ is a hash function;
ci is an incremental counter;Di is the block’s difficulty level,
which is adjusted dynamically according to block interval;
q 2 N is the upper bound of ci; xi is the hash value of the
i-th block, which is defined as follows:

xi :¼
Hashðxi�1; i; T iÞ if i > 0;
Hashði; T iÞ if i ¼ 0;

�
(2)

where T i denotes a set of transactions ðT0; T1; � � �Þ to be
packed in the i-th block.

The workflow of PoW consensus is shown in Fig. 2. If a
node tries to mine a new block Bi, it needs to compute the
hash with ci starting from 1 according to Eqn. (1) until the
output satisfies Di. Then, ci will be recorded in Bi for block
validation. Since an ideal hash function can be considered
as a random oracle, in our analysis, the output of Hashð�Þ
distributes in f0; 1gk uniformly regardless of inputs. Thus,
the probability of mining a new block at each round is inde-
pendent and follows the same distribution, which is similar
to a lottery. If there are forks in the blockchain, nodes will
always choose the “heaviest” chain (i.e., max

P
Di) as the

valid one.
PoS has a similar design to PoW. The difference is that

PoS introduces the concept of stake to relax the threshold Di

for more efficient mining. More specifically, nodes who
own more tokens for a longer time will have a higher proba-
bility to successfully mine new blocks. So the threshold

Fig. 2. Workflow of PoW consensus protocol.
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target actually is balanceOfMiner�Di for PoS. With this,
PoS has less uncertainty in the mining process than PoW.

Hardware Assistance. Proof-of-Elapsed-Time (PoET) [23] a
hardware-assisted consensus proposed by Intel, which leverages
the trusted execution environment (TEE), i.e., Intel SGX, to
enforce random waiting time for block mining. Because of
eliminating the hash calculation, PoET is more energy-saving
than PoW and PoS. However, there still exist vulnerabilities in
Intel SGX,whichmay break the security of PoET [24], [25], [26].

2.3 zk-SNARK

A zero-knowledge proof scheme [27], [28] allows one party
(i.e., verifier) to outsource the evaluation of a function F ð�Þ to
another untrusted party (i.e., prover) without leaking any pri-
vate information. It has two secure properties: (i) Completeness
and zero-knowledge. The verifier can validate the correctness of
the evaluation result of F ð�Þwhile learning nothing about the
private inputs. (ii) Soundness. Moreover, a dishonest prover
cannot persuade the verifier with a fake proof.

Non-interactive zero-knowledge proofs are abbreviated
to zk-SNARK. Groth et al. [27] further proposed a more effi-
cient zk-SNARK scheme, known as Groth16, whose proof
size is independent of the complexity of F ð�Þ and keeps in a
constantly small size. Because of its advantages in effi-
ciency, we adopt Groth16 as our backend zk-SNARK
scheme in BlockSense. Specifically, a zk-SNARK scheme
generally contains the following three algorithms [27]:

� ðek; vkÞ :¼ KeyGenðF; �Þ: The randomized key genera-
tion algorithm generates two keys: an evaluation key
ek and a verification key vk. � is the security parame-
ter. In BlockSense, requesters would generate these
public parameters before publishing sensing tasks.

� ðy;pyÞ :¼ Proveðek; u; wÞ: The prover takes ek, pub-
lic input u, and private input w (i.e., witness) as
parameters, and then computes the function’s output
y :¼ F ðu;wÞ. py is used to prove y’s correctness. Note
that py will not leak any private information, espe-
cially the witness.

� f0; 1g :¼ Verifyðvk; u; y;pyÞ: The verification algo-
rithm takes vk, u, y, and py as inputs, and then out-
puts 1 if y ¼ F ðu;wÞ, otherwise 0.

3 THREAT MODEL AND ASSUMPTION

We describe the threat model and security goals for Block-
Sense. First, considering the consensus safety under the syn-
chronous network assumption, we propose three potential
threats against the PoD consensus protocol:

� Staleness attack. Since miners who lose in a mining
competition need to discard their stale workloads
and start a new round of competition, some mali-
cious miners may reuse stale workloads (i.e., data
validation work) that are executed for previous
blocks to generate a new block faster, which could
cause an unfair mining competition.

� Forgery attack. A malicious miner may deceive other
miners about its workload value, e.g., decreasing the
amount of its required workload in generation of a
new block, to gain a higher probability of winning in
a mining competition.

� Mining pool threat. Due to the mining pools [29] exist-
ing in PoW based blockchains (e.g., bitcoin), the
majority of computing powers are centralized on
several organizations, which violates the principle of
decentralization of blockchains, thereby increasing
the security risk of blockchain systems.

Second, we consider another four possible threats/risks
for the whole MCS system:

� Data leakage risk. Since blockchain is considered as a
public decentralized ledger, which has the property of
transparency, so that sensory data stored in it face a
data leakage risk, especially for sensitive information.

� Free-riding and false-reporting. A worker may have the
intention of ceasing the MCS work, if the worker is
paid before completing the work, which is called
free-riding. On the contrary, if the worker is paid after
completing the MCS work, the requester may have
the intention of repudiating the payment for this
task, which is called false-reporting [11].

� Sybil attack. In general, each miner only has one iden-
tity in BlockSense. However, there may exist evil
miners, which illegitimately pretend to be multiple
identities, in an attempt to control most blockchain
nodes in the network to disable the functions of rep-
licated nodes, or to defraud more rewards [30].

� Single point failure. If the entire MCS system is dis-
rupted due to the failure of a subsystem (e.g., the
centralized server), it is called the single point fail-
ure. This failure is undesirable in any systems since
it significantly affects the availability or reliability.

We assume that (i)workers will not proactively breach the
collected data to others, because this irrational behavior can
harm workers’ personal interests; (ii) requesters will honestly
generate public parameters following the PoD consensus pro-
tocol, since a trusted setup is needed to start their tasks; (iii)
more than half of the blockchain nodes are honest, i.e., n �
2f þ 1. In Section 5, our security analysis is conducted under
this premise. Regarding the above threat model, BlockSense is
designed to fulfill the following four goals:

� Consensus security and correctness. The proposed PoD
consensus protocol protects the blockchain-quality
of BlockSense against the threats listed above and
provides a secure and correct open competition pro-
tocol for block generation.

� Data confidentiality and integrity. The collected sensory
datawill not be disclosed or tampered in BlockSense.

� Incentive fairness. BlockSense guarantees the fair
exchange between sensory data and rewards without
any central authorities, and prevents malicious behav-
iors such as free-riding and false-reporting attacks.

� System reliability. BlockSense will eliminate the
effects of single point failure issue, which could be
caused by DDoS attacks. Besides, BlockSense will
efficiently defense Sybil attacks.

4 BLOCKSENSE DESIGN

Fig. 3 illustrates the overall architecture of BlockSense,
which comprises three types of roles: requesters R, workers
W and the blockchain. Owing to the decentralization of
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blockchain, BlockSense gets rid of the centralized server and
makes the entire system decentralized in the blockchain net-
work, through whichR andW can participate in the crowd-
sensing process. More specifically, R publish their MCS
tasks through deploying task-driven smart contracts, and
W complete MCS tasks through invoking corresponding
smart contracts to submit sensory data. No trusted arbiter is
needed in such a decentralized crowdsensing process, so
that there is no single point failure.

Miners M are responsible for holding the consensus
security of the entire blockchain system. In detail, M exe-
cute received transactions (including smart contracts), mine
new blocks, and broadcast valid transactions and blocks in
the blockchain network. Meanwhile, M save a replicas of
the whole blockchain data, and thereby improving data
redundancy and guaranteeing data-corruption-proof. Thus,
BlockSense can promise the system availability even if some
nodes are failed or compromised.

In addition, smart contracts are unchangeable code
deployed atop the blockchain, theywill be executed automati-
cally and faithfully when the pre-defined rules are triggered,
which guarantees fair and secure transactions betweenR and
W. Moreover, requesters and workers must make security
deposits before taking part inMCS tasks. Specifically, reques-
ters have to deposit task rewards in smart contracts before
publishingMCS tasks, and both requesters and workers have
to pay miners for transaction fees when they participate in
MCS tasks. This mechanism largely increases the cost of
launching malicious attacks thereby potentially mitigating
various attacks (e.g., Sybil attacks, DDoS attacks, and free-rid-
ing and false-reporting attacks [11]).

In this paper, we propose two methods to overcome the
challenges discussed in Section 1. First, in order to conduct
useful work instead of “useless” hash calculation and reduce
resource waste in BlockSense, we propose a novel consensus
protocol, namely Proof-of-Data (PoD), to utilizeminers to ver-
ify the data quality while satisfying the consensus require-
ment (Section 4.1). Second, for the purpose of preventing
private data from disclosure to M when verifying data qual-
ity, we design a homomorphic data perturbation scheme,
which allows M to verify the data quality without revealing
data contents (Section 4.2). Themain notations and definitions
are shown in Table 1.

4.1 Proof-Of-Data (PoD) Consensus Protocol

Public blockchain systems usually adopt Proof-of-X
(PoX) style consensus protocols. The most widely used
consensus is the PoW, which accounts for more than
90% of the total market capitalization of existing digital
cryptocurrencies [17]. Although PoX is an effective
approach to achieve the consensus in a blockchain sys-
tem, it wastes massive energy in solving “useless” puz-
zles. Thus, we propose the PoD consensus protocol in
BlockSense, which provides useful data quality valida-
tion to MCS, while satisfying the basic consensus
requirements of blockchain.

4.1.1 Primitive

The essence of the PoX style consensus is the randomness.
In our PoD consensus, we bring in a new concept of ran-
dom workload C, which is inspired by the random wait-
ing time of PoET [23]. Miners M have to do a certain
amount of data validation work (e.g., � C) before they
are allowed to create new blocks. In order to efficiently
verify if the data validation work is done faithfully by
miners, we utilize zk-SNARK to build three PoD primi-
tives as follows:

� GenParamðF; �Þ: Taking the data validation function
F ð�Þ for a specific MCS task and the security parame-
ter � as inputs, this algorithm runs zk-SNARK Key-

GenðF; �Þ algorithm to generate a key pair ðek; vkÞ.
� ProveDataðek;S; HN�1; pk; skÞ: S denotes perturbed

sensory data (the perturbation scheme is described
in Section 4.2); HN�1 is the hash value of the
(N � 1)-th block (suppose that miners are mining the

Fig. 3. The overall architecture of BlockSense.

TABLE 1
Notations and Definitions in BlockSense Design

Notation Definition

BN TheN-th block in the blockchain
C The workload of proof-of-data consensus
CN The required workload of the N-th block
Dk The k-th public sensory data
F ð�Þ The data validation function for MCS tasks
HN The hash value of the N-th block
M Miner
N The height of blockchain
R Requester
S The private sensory data
S The perturbed sensory data
T The set of transactions in the block
Ti The i-th transaction in the block
TSN The timestamp when the N-th block was generated
DTS The predefined block generation interval time
W Worker
Y The validation result of F ð�Þ
ðpk; skÞ The public/secret key pair of the miner
� The security parameter
ek The evaluation key
vk The verification key
~y The output of ProveData
~u The public input of ProveData
w The private witness of ProveData
p~y The generated proof for proving the correctness of~y
aaaaaaa The weight vector for computing S
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N-th block); ðpk; skÞ is the public/secret key pair of
the miner. Let ~u :¼ ðS; HN�1; pkÞ be the public input,
and w :¼ sk represent the private witness. Since sk is
taken as a witness input, the miner will not reveal
its secret key. This algorithm runs zk-SNARK
Proveðek;~u; wÞ for the Language L, where the pair
function is used to verify if the miner has the owner-
ship of pk. If the miner’s identity is incorrect (i.e., has
a wrong sk), the algorithm will terminate immedi-
ately. The Validate function defines the specific data
validation rules to validate data quality, and outputs
the validation result Y 2 f0; 1g. If Y ¼ 1, the sensory
data is considered to be valid otherwise invalid.
ProveData algorithm generates a proof p~y that
proves the correctness of the output ~y :¼ ðY; H 0

N�1Þ
given the inputs ~u and w. H 0

N�1 is used to ensure that
this data validation work is run for the N-th block
(i.e., the latest block). If other miners fail to verify
H 0

N�1 ¼ Hashðthe hash value of the (N-1)-th blockÞ,
they will reject this block. In this way, we prevent the
miner from using stale workload to generate new
blocks, i.e., staleness attacks.

� VerifyProofðvk;S; HN�1; pk;~y;p~yÞ: This algo-
rithm first checks if the given HN�1 is the real hash
value of the (N � 1)-th block by verifying H 0

N�1 ¼
Hashðthe hash value of the (N-1)-th blockÞ. After
HN�1 passes verification, this algorithm takes the
public knowledge ~u :¼ ðS; HN�1; pkÞ, the data vali-
dation result ~y :¼ ðY; H 0

N�1Þ and the proof p~y as
inputs, then this algorithm runs zk-SNARK Ver-

ifyðvk;~u;~y;p~yÞ and outputs the result indicating if
the statement is true.

Algorithm1 Language L: Requester-Defined Data Vali-
dation F ð�Þ
Data: Public Inputs: S,HN�1, pk; Private Witness: sk
Result: Y,H 0

N�1

if pairðpk; skÞ is true then
// requester-defined data validation rules
Y :¼ ValidateðSÞ;
H 0

N�1 :¼ HashðHN�1Þ;
else
exit; // miner’s identity is incorrect

4.1.2 Protocol

On the basis of above three primitives, we describe the
workflow of PoD consensus protocol as follows:

Stage 1: Public parameter generation. Requesters R need to
run the GenParam algorithm to generate ek and vk keys for
specific MCS tasks, and hardcode these two keys in smart
contracts as initial parameters. Thus, miners M can obtain
ek and vk keys from smart contracts to run ProveData and
VerifyProof algorithms.

Stage 2: Block creation. This part is the main process of
PoD consensus, which is illustrated in Fig. 4. Suppose that
miners are mining the N-th block. First, each miner needs to
compute its random workload CN at the beginning of min-
ing a new block. We define the formula of CN as follows:

CN :¼ Cmin � CNavg � logð�Þ; (3)

where Cmin; CNavg > 0, Cmin is the minimum workload (a
fixed system parameter), CNavg is the local average workload
for the N-th block, � � Uð0; 1Þ. CNavg is updated every block
as follows:

CNavg :¼ CN�1
avg � DTS

� �
= TSN�1 � TSN�2ð Þ; (4)

where DTS is the ideal block interval time (e.g., 10 seconds),
CN�1
avg denotes the local average workload recorded in the

(N � 1)-th block, TSN�1 and TSN�2 denote the timestamps
recorded in the (N � 1)-th block and its parent block,
respectively. The purpose of CNavg is to maintain the block
interval stable when the number of miners in the system
changes, which can reduce the probability of blockchain
forks. � is generated as follows:

� :¼ NormðHashðBN�1jjNjjpkÞÞ; (5)

where BN�1 is the (N � 1)-th block, N is the height of min-
ing block, pk is the public key of the miner of theN-th block,
Normð�Þ is the min-max normalization function.Hashð�Þ is a
hash function, which can be considered as a random oracle.
Since the output of Hashð�Þ distributes uniformly in f0; 1gk
regardless of inputs, � distributes in (0,1) uniformly, i.e.,
� � Uð0; 1Þ.

Second, after computing the random workload CN , the
miner has to conduct data validation work by executing a

Fig. 4. Block creation workflow of PoD consensus protocol and its block structure.
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certain amount of ProveData algorithm (i.e., � CN ) to sat-
isfy the required workload. However, different MCS tasks
have different data validation rules, so that they have differ-
ent computing complexity. To this end, we need to specify a
unified standard to quantify the workload of ProveData
algorithm when facing different MCS tasks, something like
“gas” in Ethereum [20].

Since ProveData algorithm is constructed on the Prove
algorithm of zk-SNARK, we convert the problem of quanti-
fying the workload of ProveData algorithm into analyzing
the complexity of Prove algorithm. Here we choose
Groth16 [27] as our zk-SNARK scheme, whose proof size is
constant and small (i.e., 127 bytes). The calculation amount
of Prove algorithm of Groth16 is mainly composed of 7
Fast Fourier Transforms (FFTs) and multiple exponentia-
tions. After dropping constant terms of Prove algorithm, it
contains ð3nþmÞE1 and nE2, where m and n are respec-
tively the number of constraints and multiplication
gates [27] in R1CS instance, E means multiple exponentia-
tions. Thus, we can establish the linear relationship between
the workload of ProveData algorithm and the complexity
of Prove algorithm, which is defined as follows:

CNi :¼ �1ð3nþmÞ þ �2nþ �; (6)

where �1; �2; � > 0. �1 and �2 are coefficients of the workload
of multiple exponentiations, � means the workload of con-
stant terms (i.e., FFTs) in Prove algorithm. Thus, we can
easily quantify the workload CNi of the i-th data validation
work according to Eqn. (6). Once completing one data vali-
dation work, the miner will check if the condition

P
CNi �

CN is satisfied. If so, the miner successfully generates the
N-th block and immediately broadcasts it through the gos-
sip protocol in the network; if not, the miner continues con-
ducting the next data validation work to meet the required
workload. If the miner receives a new valid block during
mining the N-th block, it should interrupt current mining
process and try to mine the next block.

We show the block structure of BlockSense in Fig. 4. In
the N-th block header, it includes the hash value of the par-
ent block HN�1, the local average workload CNavg, the time-
stamp TSN of generating the N-th block, the Merkle root of
transactions, and the public key of the miner of mining the
N-th block. On one side, miners use the information
recorded in the previous block header to calculate their new
random workloads for the next block. On the other side,
miners also can use these fields in the block header to verify
the validity of a new received block. A transaction T con-
tains public parameters generated by requesters R, and all
the proofs and outputs of ProveData algorithm executed
by miners M. Miners can use the information recorded in
the transaction to verify the correctness of the data valida-
tion work.

Stage 3: Block verification. Once miners receive a new
block, they will check the correctness and legality of the
block. First, miners verify transactions packed in the new
block by running VerifyProof algorithm. The miner takes
ðvk;S; HN�1; pk;~y;p~yÞ as inputs of VerifyProof, where vk
has been initialized in the smart contract. If the miner who
generated the new block completed the data validation
work faithfully and correctly, the proofs p~y and outputs ~y

recorded in transactions will pass the verification, and then
the VerifyProof algorithm outputs 1, otherwise 0. Sec-
ond, miners check if the local average workload Cavg is cor-
rect by re-calculating it according to public information
contained in the previous block (as Eqn. (4)). Third, miners
check if the sum of the workload of all transactions T ¼
ðT0; T1; � � �Þ satisfies that

P
Ci � C. In specific, the required

workload of the new block C is firstly calculated according
to Eqn. (3). Then, the miner transverses all the transactions
packed in the new block, and calculates the workload (i.e.,
computation complexity) of each data validation job Ci from
its arithmetic circuits appended in the transaction (as
Eqn. (6)). After that, the miner sums the total workload of
all the transactions and checks if it exceeds the required
workload of the new block. If so, the workload contained in
the new block meets the requirement. Only if all above steps
pass verification, this new block will be considered to be
valid and appended to the blockchain.

Collision Resolution. Since PoD is a probabilistic consensus
protocol, it has a possibility that two or more miners almost
simultaneously generate different blocks and broadcast
them in the network, thereby causing a fork. To solve forks
in the blockchain and achieve eventually consistency among
all honest miners, honest nodes should obey two basic rules:
(i) honest nodes always choose the longest chain as the valid
chain, which is similar to that in Bitcoin and Ethereum. (ii) if
one honest node receives multiple valid block candidates, it
always chooses the candidate whose workload is minimal
as the latest block. In Section 5.2, we further formally prove
that the PoD protocol will eventually converge after a fork
and the persistence feature is satisfied among all honest
nodes.

Energy Conservation. As mentioned above, in order to
guarantee the security and fairness of PoD, we do not allow
miners to use the stale data validation work to generate
new blocks (realizing it by verifying the authenticity of
HN�1). However, it might waste a lot of computing resour-
ces since the workloads of those miners who lose in the min-
ing competition must be discarded. It is a fact that miners
who have higher required workloads usually have lower
probability to win in the mining competition, so that these
miners are very likely to waste their computing resources in
this round of block generation. In order to reduce the com-
puting resources wastes, we set an upper-bound threshold
filter ‘ (‘ is a tunable parameter, e.g., 20%) of workloads to
eliminate some miners in the early stage of mining competi-
tion. Specifically, only a miner’s workload C falls in the low-
est 20% of all random workloads of miners, it can qualify
for the mining competition in this round. However, miners
cannot know whether their workloads lie in the lowest 20%
or not without exchanging information. Here, we utilize the
parameter � to devise a simple non-interactive approach to
check the eligibility of miners. According to Eqn. (3), we
know that � is inversely proportional to workload C, and
� � Uð0; 1Þ, so we can realize the upper-bound threshold
filter of workloads efficiently by checking if � > ð1� ‘Þ,
such as > 80%. By setting such a threshold filter, we can
reduce the waste of computing resources by about 1� ‘,
e.g., 80%. At the same time, sane miners have low random
workloads (e.g., lowest 20%) will be motivated to do the
verification jobs for gaining the mining rewards, so such a
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“selfish” selective mining strategy does not break the proto-
col liveness.

4.2 Homomorphic Data Perturbation Scheme

In BlockSense, miners utilize the PoD consensus protocol to
verify the sensory data quality and then generate new
blocks. However, the sensory data has the risk of privacy
leakage to miners since the sensitive data would be exposed
to miners during the verification process. So as to avoid
data privacy leakage, the collected data need to be
encrypted before submission. However, common encryp-
tion algorithms (e.g., RSA and ECC) will disrupt the inher-
ent structures of sensory data, which prevents miners from
performing the data quality proof. Although Homomorphic
Encryption (HE) algorithms can preserve the inherent struc-
tures of data (i.e., addition and multiplication homomor-
phism), existing HE schemes are not practical due to heavy
calculations and large keys [31]. Therefore, we design a
light-weight privacy-preserving scheme, i.e., homomorphic
data perturbation, to avoid data privacy leakage while pre-
serving the temporal feature of sensory data.

Our homomorphic data perturbation scheme works as
shown in Fig. 5. We formalize the private sensory data as a
vector S :¼< S0; S1; S2; � � � ; Sn > . We assume that there are
some public sensory data in the system (e.g., open datasets
from public facilities). Thus, workers W can use these public
data to obfuscate the private sensory data S before submitting
it to the blockchain network. First, the worker generates a
ðkþ 1Þ-length weight vector aaaaaaa :¼< a0;a1;a2; � � � ;ak > ran-
domly, where

Pk
i¼0 ai ¼ 1 and ai 2 ð0; 1Þ. Second, the worker

randomly choose k public data vectors D1;D2; . . . ;Dk from
open datasets. Then the worker can compute the perturbed
sensory data as follows:

S :¼ a0S þ a1D1 þ a2D2 þ � � � þ akDk: (7)

The weight vector aaaaaaa is kept as a secret parameter and not
exposed to miners. The worker encrypts the weight vector
with the requester’s public key, so the weight vector can
only be decrypted by the requester. Then the requester can
revert the private vector (i.e., sensory data) by using the
decrypted weight vector. Miners cannot revert the private
vector without the knowledge of the weight vector aaaaaaa, so aaaaaaa

can be considered as a kind of secret keys.
In order to reveal the difference and connection between

the original data and perturbed data by a concrete example,
we analyzed three types of sensory data collected from
mobile phones, i.e., environmental sound, Wi-Fi signal and
LTE signal, which are described in Section 6. First, we

leverage the Pearson Correlation Coefficient (PCC) as the
metric to measure the linear relationship between original
data and perturbed data, which is calculated as follows:

rS;S :¼
Pn

i¼1ðSi � SÞðSi � SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðSi � SÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðSi � SÞ2

q ; (8)

where n denotes the length of data vectors, S :¼ 1
n

Pn
i¼1 Si,

and S :¼ 1
n

Pn
i¼1 Si. S and S represent the original data vec-

tor and the perturbed vector, respectively.
Table 2 shows the PCC values of three types of sensory

data in Fig. 6. Here we obfuscated the private sensory data
with 9 public data vectors and a randomly generated weight
vector aaaaaaa :¼< 0.0500, 0.4549, 0.0426, 0.3190, 0.0291, 0.0033,
0.0502, 0.0003, 0.0005, 0.0502> . We observe that the abso-
lute PCC values of these three types of sensory data all fall
in 0.0�0.2, which indicates there is no apparent linear rela-
tionship between original data and perturbed data. It is
obvious that the smaller weight of the original data is, the
larger divergence of original and perturbed data distribu-
tions are. Thus, miners or attackers are hard to recover the
original data according to the perturbed data’s distribution.
However, a smaller weight of the original data would cause
a larger feature loss, thereby decreasing the accuracy of out-
lier detection. Thus, there is a trade-off between privacy-
preservation and detection accuracy.

We then investigate the connection between original data
and perturbed data. In particular, the connection can be mod-
eled by the temporal stability, which represents the difference
of values between two consecutive timeslots. It is defined as
jSi � Si�1j, where Si denotes the i-th data point in the data
vector S. As shown in Fig. 6, the Cumulative Distribution
Function (CDF) curves of three types of sensory data are plot-
ted in the light of the definition of temporal stability. We
observe that more than 95% of the sensory data have less
than 5%, 8%, 8% difference between consecutive timeslots in
environmental sound, Wi-Fi signal, and LTE signal, respec-
tively. This result demonstrates that these three types of sen-
sory data have good temporal stability features. More

Fig. 5. Homomorphic data perturbation scheme.

TABLE 2
Pearson Correlation Coefficient (PCC) Between the Original

Data and Perturbed Data in Fig. 6

Environmental sound Wi-Fi signal LTE signal

PCC 0.1652 0.1840 -0.0391

Fig. 6. Temporal stability of original data and perturbed data.
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importantly, we observe that these perturbed data still have
favorable performance in the temporal stability, i.e., < 6%,
8%, 5%, respectively. Without loss of generality, many stud-
ies have revealed that sensory data usually show good tem-
poral stability in either MCS environment [32], [33] or
wireless sensor networks [34]. Thus, even for these perturbed
data, we still can utilize the temporal features to detect the
data quality effectively. Many outlier detection methods
leveraging temporal features have been widely used in aca-
demia and industry [35], which are also suitable for our
homomorphic data perturbation scheme.

4.3 On-Chain and Off-Chain Joint Storage
Mechanism

Although a blockchain is a kind of decentralized database,
its design philosophy determines that it is not suitable for
storing large amounts of data. To alleviate the blockchain
storage problem, we also adopt a commonly used joint stor-
age mechanism of on-chain and off-chain in BlockSense to
extend the storage capacity of blockchain while ensuring
data integrity.

Consider the fact that sensory data normally will not be
downloaded by requesters until MCS tasks are completed.
Thus, the access rate or movement rate of sensory data is
much lower than that of transaction data in blockchains. In
order to reduce unnecessary data movement and energy
consumption, we decouple sensory data from transaction
data in BlockSense. In particular, we store the digest (i.e.,
hash value) of perturbed sensory data HashðSÞ in the block-
chain (on-chain) while saving the perturbed sensory data S
in an off-chain distributed storage system. Since blockchains
can ensure on-chain data tamper-proof, we can easily check
if the perturbed data obtained from the off-chain storage
system S0 are tampered with by verifying whether the on-
chain data digest HashðSÞ ¼ HashðS0Þ. Thus, the hash value
of perturbed sensory data can be viewed as a data pointer
used to check the integrity of obtained perturbed data. In
addition, because we store perturbed sensory data instead
of original data in the off-chain system, it will not cause
data privacy disclosure.

We can utilize state-of-the-art distributed storage tech-
nologies but not limited to such as Amazon S3 [36] and
IPFS [37] to offer off-chain storage services. Since the life
cycle of off-chain data ends when the MCS task is com-
pleted, the availability of off-chain data does not need to be
strictly guaranteed like blockchain data. It is fine to discard
deprecated off-chain data to reduce maintenance costs. The
size of data digests is much smaller than the perturbed sen-
sory data, so BlockSense largely slows down the growth
rate of blockchain size and offloads the storage burden for
common users, especially for those who only have resource-
constrained devices, such as mobile phones.

4.4 BlockSense’s Workflow Overview

As shown in Fig. 7, we describe the MCS workflow in Block-
Sense in the following four main steps:

1) Requesters R activate MCS tasks through constructing
and posting smart contracts. R can initialize tasks
information in smart contracts, such as task goals,
rewards, required data quantity, etc. In order to

prevent false-reporting attacks from requesters, R
have to make deposits in smart contracts when pub-
lishing MCS tasks. Moreover, R need to generate ek
and vk for data validation functions F ð�Þ through
running GenParam algorithm, for miners to generate
data quality proofs. Data validation functions F ð�Þ
are customized for different MCS tasks byR.

2) Workers W accept MCS tasks, store perturbed sensory
data and then submit the digest of perturbed sensory data.
W can get published MCS tasks through the block-
chain network, and accept interested tasks. W collect
sensory data in the light of the requirements of MCS
tasks, and obfuscate the original sensory data. And
then W store the perturbed sensory data in the off-
chain distributed storage system, and complete MCS
tasks by uploading the digest of perturbed sensory
data through the data submission protocols pro-
vided by smart contracts. In the process of data sub-
mission, W need to pay miners M for transaction
fees (the amount of fees depends on the complexity
of transactions). Thus, W must deposit transaction
fees before taking part in MCS tasks, which largely
increases attack cost thereby potentially mitigating
various attacks and malicious behaviors [11].

3) Miners M obtain off-chain sensory data, verify the data
quality and create new blocks. M fetch transactions
from transactions pools, and then obtain correspond-
ing perturbed sensory data from the off-chain storage
system. If the on-chain data digest is consistent with
the digest of off-chain data, it means that the obtained
off-chain data have not been tampered with. ThenM
conduct data validation work using obtained data
through running DataProve algorithm. After verify-
ing a certain amount of sensory data (i.e., satisfying
the workload requirement), M create new blocks

Fig. 7. The crowdsensing process in BlockSense.
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containing verifiable data quality proofs in accor-
dance with the PoD protocol, and then broadcast
them to the blockchain network for synchronization.
Since the perturbation key is encrypted with R’s
public key set in the smart contract, R can easily
obtain the perturbation key and recover the per-
turbed data as described in Section 4.2.

4) Requesters abort MCS tasks (optional). R can check the
status of MCS tasks through invoking corresponding
smart contracts. The smart contracts will close data
submission channels automatically once the tasks are
completed. R can also terminate the MCS tasks in
advance for some reasons, if so, the remaining task
rewards in the smart contracts will be refunded toR.

5 ANALYSIS

5.1 Security Analysis of BlockSense

Data Confidentiality and Integrity. (i) Confidentiality. In Block-
Sense, workers W utilize the homomorphic data perturba-
tion scheme to obfuscate the original sensory data before
submitting data, and only the perturbed data are stored in
the off-chain storage system, which will not disclose the
original data. We further quantify the security gains of the
homomorphic data perturbation scheme in Section 5.3. (ii)
Integrity. Due to the design of hash chain and consensus of
blockchains, the digest of sensory data stored in the block-
chain are hardly forged. Thus, we take the blockchain as a
root of trust, and can easily check the integrity of fetched
sensory data by comparing the on-chain data digest and the
digest of off-chain data.

Incentive Fairness. (i) Incentives. Both minersM and work-
ers W will get paid after sensory data are verified. More
specifically, M obtain transaction fees by contributing com-
puting power for the data quality validation work,W obtain
task rewards by submitting high-quality sensory data.
Workers who provide low-quality data obtain no task
rewards while losing transaction fees, even though they
participate in the tasks. This reward and punishment mech-
anism ensure the fairness among different quality workers.
Therefore, we construct the decentralized trust fabric in
BlockSense and motivate users to participate in with fair
incentives. (ii) Free-riding and false-reporting. In BlockSense,
MCS tasks are published through smart contracts instead of
the intransparent centralized server, so everyone can access
the task details and reward rules. Due to the transparency
and tamper-proof features of blockchains, requesters R and
workers W can complete MCS tasks without trusting each
other. For R, they have to deposit task rewards in the smart
contracts before posting MCS tasks. W will be rewarded by
smart contracts automatically when they complete tasks
faithfully, and R have no chance to deny W’s contributions.
To this end, false-reporting attacks can be efficiently prohib-
ited. ForW, they have to complete the MCS tasks in the light
of the pre-defined task requirements honestly, i.e., submit-
ting qualified sensory data. If not, W cannot get task
rewards from smart contracts due to the low-quality sen-
sory data, consequently preventing free-riding attacks. We
further analyze the possibility of cracking the homomorphic
data perturbation scheme to launch free-riding attacks in
Section 5.3.

System Reliability. (i) Single point failure. BlockSense was
built on the top of the decentralized blockchain, where min-
ers M maintain a replicas of blockchain data. To this end,
BlockSense can withstand one or more nodes failure. (ii)
Sybil attack. On the miner side,Mmust conduct data quality
validation work to generate new blocks. Thus, attackers
need more computing resources to pretend multiple identi-
ties, consequently increasing the cost of Sybil attacks signifi-
cantly at malicious nodes. On the user side, requesters R
and workers W must pay transaction fees to miners when
participating in MCS tasks, thereby largely increasing the
economic cost of Sybil attacks. Both the high computing
costs or economic costs would deter Sybil attacks in
BlockSense.

5.2 Correctness and Security Analysis of PoD

Consensus Correctness. In order to rigorously prove the cor-
rectness of PoD, we further analyze it from persistence and
liveness, two essential properties for a robust consensus pro-
tocol [22], [38].

Theorem 5.1 (persistence). If a transaction is included in a
block more than v deep of the blockchain of an honest node, this
transaction will be ultimately persisted in every honest node’s
blockchain with high probability.

Proof. We demonstrate persistence by showing that the
probability of a minority attacker generating a chain
favored by a majority of honest nodes at v blocks after a
fork decreases exponentially.

We denoteM andm as the size of honest majority and
malicious minority, respectively. For block BN , we have
that the total workload of two parties is distributed
according to the minimum of random workload, i.e., the
maximum of �:

fMðNÞ �iid maxffCavglog ð�ÞgMg (9)

fmðNÞ �iid maxffCavglog ð�Þgmg (10)

where � � Uð0; 1Þ. After v blocks from a fork, we define
the relative total workload:

F ðvÞ :¼
Xv
N¼1

fMðNÞ � fmðNÞ (11)

With the assumption of every node’s random work-
load is independent and identically distributed, we use
Chernoff bound to show that the probability of the event
that a minority wins is exponentially small in v:

Pr F ðvÞ � 0
� �

� min
s> 0

E e�sF ðvÞ
h i

(12)

¼ min
s> 0

Yv
N¼1

E e�sfM ðNÞ
h i

E e�sfmðNÞ
h i

(13)

¼ min
s> 0

E e�sfM ðNÞ
h i

E e�sfmðNÞ
h i� �v

(14)

Since we have the assumption that honest nodes
always > 50%, i.e., M > m, there exists an s > 0 such
that the product of the inner expectations is less than 1.
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Thus, we have that the probability of the event that the
minority wins the mining competition with smaller total
workload decreases exponentially in v blocks after a
fork. tu

Theorem 5.2 (liveness). If one honest node submits a transac-
tion and broadcasts it, BlockSense eventually includes it in the
blockchain, where “eventually” means it may take a sufficient
amount of time V.

Proof. The liveness is roughly analogous to the chain
growth property. We formalize the chain growth as a
Poisson process. Under the assumption of a partial syn-
chronous network, one honest node submits and broad-
casts a transaction T , and other honest nodes can receive
T within a certain time. Since honest nodes always >
50%, the probability that the latest block is proposed by
an honest node in a sufficient amount of time V is larger
than 50%. Since an honest leader packs transactions
sequentially in the pending pool into a block, T will be
eventually appended to the block in good rounds. We
denote Xi as the event that the i-th round is good, which
is an independent and identically distributed event. Let
X ¼

PV
i¼1 Xi and m ¼ V=2, and we have E½Xi	 � V=2.

Using Chernoff bound, we obtain

Pr X � ð1� dÞm½ 	 � e�
d2m
2 ; (15)

where d ¼ 1=2. Thus,

Pr X > V=4½ 	 ¼ 1� Pr X � V=4½ 	 > 1� e�V=16: (16)

It shows that when V is sufficient large, there are at
least V=4 good rounds with high probability. In other
words, T will be included in the blockchain within a suf-
ficient amount of time V. tu

Consensus Security. We also discuss the security of PoD
consensus protocol against three aforementioned attacks.
Suppose that the latest block is the N-th block. (i) Staleness
attack. In PoD, miners need to input the hash value of previ-
ous block HN�1 when they execute the ProveData algo-
rithm, also, miners cannot know the hash value of unmined
blocks in advance. So, other miners can easily tell if the data
validation work is prepared for the new block by checking
if H 0

N�1 ¼ Hashðthe hash value of the (N-1)-th blockÞ. Thus,
PoD can well resist staleness attack. (ii) Forgery attack.
According to Eqn. (3), we know that the workload value is
calculated based on public information, and these informa-
tion are included in the blockchain. Thus, other miners will
find the claimed workload is incorrect when verifying the
block, so that the malicious miner will fail to accelerate
block generation by modifying its workload. (iii) Mining
pool threat. In comparison with PoW, PoD can resist such
centralized cooperative organizations from the root. Pro-
veData algorithm of PoD demands the miner inputting the
private key sk as a witness (i.e., private input) to identify
that if skmatches the miner’s public key pk. If not, this algo-
rithm will terminate immediately. In general, only the miner
itself knows its private key, so he cannot outsource Prove-
Data algorithm to other miners for creating blocks faster.
Thus, PoD can resist mining pools well.

5.3 Security Analysis of Homomorphic Data
Perturbation Scheme

We analyze the privacy gains of homomorphic data pertur-
bation scheme in this section. Since workers W encrypt the
weight vector aaaaaaa and k selected public vectors with the
requester’s public key, attackers A only know the perturbed
data as long as the requester’s private key still keeps secret.
As discussed in Section 4.2, we know that the original sen-
sory data and perturbed data have no apparent linear rela-
tionship. Due to different data distributions between them,
it is hard for attackers A to infer the original data according
to the distribution of perturbed data.

Security Assurance. Here, we assume the worst case: What
if attackers A knows k selected public data vectors through eaves-
dropping the whole network? We formalize this assumption as
follows:

Ŝ ¼ ðS� ðâ1D1 þ â2D2 þ � � � þ âkDkÞÞ=â0; (17)

where the superscript^means unknown parameters. How-
ever, attackers A still do not know the weight vector aaaaaaa

because it is never transferred in plaintext in the network. If
A want to obtain the weight vector aaaaaaa, they still need the
knowledge of (kþ 1) elements of S to solve Eqn. (17). Thus,
attackers A cannot revert the true S as long as the number
of exposed original data points is smaller than (kþ 1). This
security bound holds according to the underdetermined
system theory [39]. Meanwhile, the security bound reveals
that the security strength of this scheme is proportional to k.
In other words, a larger k provides a stronger privacy
guarantee.

However, it arises a concern that if there exists a high
correlation between chosen public data vectors, A may
revert S without knowing kþ 1 data points. This concern
can be easily solved by classifying public data into different
buckets according to data distributions, and then workers
only choose one piece of data from one bucket to decrease
the risk of private original data being cracked out. In addi-
tion, we can choose a proper weight coefficient for the pri-
vate data vector to strengthen the privacy-preservation
without losing too much detection accuracy.

Free-Riding Prevention. We also consider another case:
What if workers are malicious and choose a very small a0 to hide
their low-quality even noisy data to defraud rewards?

It is indeed possible for malicious workers to launch free-
riding attacks when public data vectors used for perturba-
tion also have comparable or good temporal stability. Thus,
those public data vectors which have good temporal fea-
tures should be intentionally avoided. If public data vectors
do not have apparent temporal stability (e.g., random distri-
bution), the perturbed data S can lose its temporal stability
with a too small a0, thereby failing to pass data quality vali-
dation and defraud rewards. We confirm this through using
10 random generated public data vectors to perturb three
types of sensory data, varying a0 from 0.1 to 0.4, as shown
in Fig. 8. We observe that the temporal stability of perturbed
data is not obvious when a0 becomes smaller. Therefore,
requesters can effectively prevent free-riding attacks by
specifying a set of public data candidates that have coarser
or poor temporal features in the smart contract.
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6 EVALUATION

6.1 Prototype Implementation and Case Study

We implement a prototype of BlockSense as shown in Fig. 9.
In particular, we develop the blockchain prototype using
Node.js, where incorporates our PoD consensus protocol.
We used ZoKrates1 as the implementation of Groth16 [27]
proving scheme to construct primitives of our PoD consen-
sus. And we utilized Electron2 to implement the operating
interface of requester and miner on PCs, and develop the
worker client on Android to collect sensory data using sen-
sors embedded in mobile phones.

We conduct a case study on this prototype. In this case,
we use a PC to simulate a requester to publish MCS tasks,
and call for 6 students with MI-4 Android mobile phones to
simulate 6 workers to take part in tasks. The data sampling
rate of the worker client is set to 1 Hz. The requester deploys
task contracts provided commitTask() and abort()

interfaces. Workers can submit collected data through com-

mitTask(), and the requester can stop the task through

abort(). As shown in Fig. 9, we collect three types of sen-
sory data (i.e., LTE, Wi-Fi, sound) through publishing three
MCS tasks on the prototype system, which demonstrates
the practicality of BlockSense. We collect over 7,000 sensory
data through BlockSense in the case study. As an example,
we visualize the Wi-Fi signal strength on different areas of
the campus, which is shown in Fig. 10. In this case, we use a
simple local median method [40] as F ð�Þ to validate the sen-
sory data quality in a local sliding window. We conduct
experiments on a PC running on a quad-core of a 3.60 GHz
Intel Core i7 with 16 GB of RAM. All codes and datasets are
available at https://github.com/imtypist/BlockSense.

6.2 Proof-of-Data (PoD) Consensus Protocol

Micro Performance. We use the aforementioned LTE dataset
as the test input and the local median method as the valida-
tion function F ð�Þ. We choose 12 different length of data vec-
tors varying from 50-data points to 600-data points from the
dataset, and evaluate their running time of GenParam,
ProveData, and VerifyProof, as shown in Fig. 11.

In Fig. 11, we observe that the consuming time of Gen-
Param and ProveData are rising with the increasing
length of data vectors. For GenParam algorithm, when the
number of data points is 50, the running time is 50.258 sec-
onds; when the number of data points is 600, the running
time is 646.463 seconds. Even though this is not a short
time, we consider that it is affordable and worthwhile for
requesters to take a few seconds or minutes to generate
keys. Moreover, the key generation is only executed once at
the initialization of the MCS task, which does not induce

Fig. 8. Temporal stability of perturbed data becomes worse with a
smaller a0.

Fig. 9. Three roles in the prototype of BlockSense: requester, miner and
worker.

Fig. 10. The case study of Wi-Fi sensing tasks on campus.

Fig. 11. Micro benchmarks of PoD consensus protocol.

1. [Online]. Available: https://github.com/Zokrates/ZoKrates
2. [Online]. Available: https://www.electronjs.org
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much time consumption. The running time of the Prove-

Data varies from 18.894 seconds to 237.505 seconds, which
is a moderately hard work for miners who mine new blocks.
Besides, we learn that the running time of VerifyProof is
nearly constant for different sizes of inputs. It is a good
characteristic for miners who verify new blocks. The mini-
mum and maximum running time of VerifyProof are
about 0.042 seconds and 0.052 seconds respectively, it is a
pretty small time consumption.

We also compare the cost of VerifyProof and Ether-
eum smart contracts, which is shown in Fig. 12. Since most
existing blockchain-based crowdsensing systems, e.g.,
CrowdBC [9], Cai et al. [18], ZebraLancer [15], are built on
Ethereum public blockchains, in order to show the effi-
ciency of the proposed approach, we take Ethereum as the
test benchmark. The running time of Ethereum smart con-
tracts is tested by the call method provided in web3.js3. This
method executes smart contracts in the EVM locally without
sending any transaction, which can reflect the performance
of smart contracts honestly. In this experiment, we observe
that VerifyProof does consume much less execution time
than Ethereum smart contracts, and this advantage becomes
more apparent as the data length increases. When the num-
ber of data points is 600, the running time of Ethereum
smart contracts is 5.225 seconds, which is about 102.7x lon-
ger than that of VerifyProof. There are two main reasons
for the large gap between them: 1) Low computational com-
plexity. VerifyProof takes the Groth16 as the zk-SNARK
backend, which provides constant-size proofs and verifica-
tion that is only linear in the size of public statement being
proven [27], [41]. In our protocol, the size of public state-
ment is equal to the number of data points, so the computa-
tional complexity of VerifyProof is OðnÞ. 2) Efficient
execution. Miners always have to re-run smart contracts in
the Ethereum Virtual Machine (EVM) to verify the correct-
ness of transactions [20], but the EVM has a poor execution
efficiency. Imagine that if there are one thousand miners
verifying a new block, they need to re-execute smart con-
tracts inside the EVM totally for one thousand times, which
is much time-consuming and resource-wasting. In contrast,
VerifyProof is implemented on C++ that can achieve a
very fast execution efficiency, miners do not need to verify
the transactions through the slow EVM anymore. Thus, the

much faster verifiable protocol, VerifyProof, provided
by PoD is very useful, which makes block verification pro-
cess more efficient, both in time and computing resource.

Macro Performance. We discuss the settings of system
parameters defined in Section 4.1. We set the block interval
time DTS ¼ 10 seconds, Cmin ¼ 3:5� 105 and the initial
value of Cavg ¼ 1� 105, �1 ¼ 1; �2 ¼ 1. Here we ignore the
constant part by setting � ¼ 0. Given these parameters, we
first evaluated the macro performance of PoD by simulating
a 30-node blockchain network and then generating 1,000
blocks, which is shown in Fig. 13a. We observe that the
block generation time is around 10 seconds (as marked in
the dashed red line), which meets the setting parameter.
The reason of block generation time floating is that work-
load C involves a random value �, so that it cannot be con-
trolled precisely. However, we can still control the block
generation time falls in a relative stable range (i.e., 8�14 sec-
onds) by tuning local average workload Cavg each round.
From Fig. 13a, we can see that Cavg changes every block
while C is maintained at a relative stable value, so that PoD
can keep a constant block generation time through dynami-
cally adjusting the local average workload.

As shown in Fig. 13b, we also simulate a dynamic block-
chain network scenario by adding another 30 nodes (totally
60 nodes) at the beginning of the 300-th block to evaluate
the macro performance of PoD consensus protocol. We
observe that the block generation time still fluctuates within
a stable range, i.e., 8�14 seconds, which shows a favorable
performance at controlling the block generation speed.
Besides, we notice that the local average workload Cavg
increases at the position of the 300-th block, while the total
workload C is still relatively constant. Through regulating
Cavg automatically, PoD can respond well to the dynamic
changes of the blockchain network.

Feasibility Demonstration. Since the validation rules are
task-specific, to further demonstrate the feasibility of the
PoD protocol, we evaluate the performance of PoD primi-
tives when adopting three different types of sequential out-
lier detection algorithms: prediction deviation, majority
modeling, and discords analysis [42]. We choose a classic
algorithm from each of these three categories of algorithms
as examples, i.e., AutoRegression (AR) [43], Isolation Forest
(IForest) [44], and Matrix Profile (MP) [45]. AR filters out-
liers through measuring the gaps between predicted values
and the original data. IForest separates normal data and
outliers in hyperspace using an ensemble of binary trees.
MP constructs matrix profiles to measure the distances
between subsequences and identifies the discords as out-
liers. We implement these algorithms under Groth16 zero-
knowledge proof scheme. The evaluation is conducted on a
PC with a 12th Intel Core i9 and 64 GB of RAM, and the
experiment results are shown in Fig. 14.

The outlier detection rules will be complied down into an
arithmetic circuit in zkSNARK scheme, so we use the num-
ber of circuit constraints to approximate the complexity of
outlier detection algorithms. In Fig. 14a, we observe that the
number of constraints is in proportion to the number of
data points, because more operations (e.g., arithmetic opera-
tions and loops) are needed for a larger input data size. MP
has a much larger computation complexity than AR and
IForest, because it has to compute matrix profiles for

Fig. 12. Cost comparison of BlockSense and Ethereum-based crowd-
sensing systems in smart contracts verification.

3. [Online]. Available: https://web3js.readthedocs.io/en/v1.3.1/web3-
eth-contract.html#methods-mymethod-call
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subsequences, which brings Oðn2Þ complexity. The running
time of ProveData primitive depends on the algorithm
complexity and input data size, varying from a few seconds
to a few minutes. From Fig. 14c, we observe that MP has a
higher growth rate of running time than AR and IForest.
This divergence does not break the security of the PoD pro-
tocol, since each worker always needs to complete the
required workload C regardless of the outlier algorithm
type, and the workload is measured by the circuit con-
straints. Besides, we observe that the running time of Veri-
fyProof primitive is relatively stable and kept at a low
value, i.e., from 6.15 ms to 10.92 ms. Thus, the transaction
verification can be done within an extremely short time.

Recently, there are some efforts enabling verifiable and
efficient neural network inference using zero knowledge
proof schemes through model quantization [46], [47], [48],
which is promising to apply more advanced outlier detec-
tion rules in our protocol. For example, zkCNN [46] dem-
onstrates that it can realize CNN inference under zero-
knowledge proof schemes within dozens of seconds,
which could be practical for model-based outlier detection
algorithms [42].

6.3 Homomorphic Data Perturbation Scheme

We compare the cost of homomorphic data perturbation
scheme with data privacy protection methods adopted in
CrowdBC [9], Cai et al. [18] and ZebraLancer [15], as shown
in Fig. 15. The length of sensory data vectors varies from 50
to 600. Here we use 9 public data to obfuscate private sen-
sory data in the homomorphic data perturbation scheme, as
described in Section 4.2. In comparison, CrowdBC adopts a
signature and encryption scheme to protect data privacy;

Cai et al. [18] use a standard additive secret sharing tech-
nique to guarantee data privacy; and Zebralancer leverages
an one-time key, signature and encryption scheme to secure
both data privacy and user anonymity. In order to eliminate
the performance difference caused by different program-
ming languages, we use Python to implement all these
methods.

In Fig. 15, we observe that the homomorphic data per-
turbation scheme outperforms three other methods in
time consumption owing to the light-weight design. The
running time of homomorphic data perturbation scheme
is about 0.05 ms and does not increase significantly as the
data length grows. Cai et al. [18] is the most time-consum-
ing method, it costs 11.72 ms running time when the
length of data vector is 600, which is almost 235x slower
than the homomorphic data perturbation scheme.
Besides, our scheme is approximately 10x faster than

Fig. 14. Performance of PoD primitives when applying other classic outlier detection algorithms. The y-axis of subplots (a)(b)(c) is on a log scale.

Fig. 13. Macro performance of PoD consensus protocol.

Fig. 15. Cost comparison of homomorphic data perturbation scheme
and three other data privacy protection methods.
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methods of CrowdBC and ZebraLancer. Moreover,
CrowdBC cannot support data quality detection in a pri-
vacy-preserving manner. Thus, the homomorphic data
perturbation scheme not only achieves a better efficiency,
which is more practical for workers who only have
resource-constrained devices, e.g., mobile phones, but
also gains a privacy-preserving data quality detection
feature.

There is also a newly proposed homomorphic encryp-
tion-based numerical data rating mechanism for block-
chain-based crowdsensing system, namely STDR [49].
However, the running time STDR spends is several orders
of magnitude larger than our proposed scheme, which is
unacceptable in MCS systems and thus we do not compare
our method with it here.

7 RELATED WORK

We briefly review recent related advances from three
aspects: traditional crowdsensing, blockchain-based crowd-
sensing and Proof of Useful Work (PoUW) consensus, and
make qualitative comparisons with some representative
works in their fields.

Traditional Crowdsensing. A few studies attempted to
address the challenges of traditional crowdsensing systems.
In particular, Lin et al. [14] proposed an auction-based
incentive mechanism, called SPIM, for crowdsensing sys-
tems to resist Sybil attacks. Meanwhile, Zhang et al. [13]
designed a privacy-friendly image crowdsourcing frame-
work (named CrowdBuy) with a data quality guarantee.
In [50], a compressive sensing based method was proposed
to protect the data privacy of crowdsensing systems. Jin
et al. [51] designed a scheme with consideration of incentive
mechanisms, data aggregation and data perturbation to pre-
serve data privacy and ensure the quality of sensory data.
However, most of these studies are still vulnerable to sin-
gle-point failures of the central server and malicious attacks.

Blockchain-Based Crowdsensing. The recent advances of
blockchain technologies bring new opportunities in over-
coming the above crowdsensing challenges. Owing to
the features of decentralization, integrity, tamper-proof
and fault tolerance, blockchain can potentially improve
incumbent crowdsensing systems. Recently, there are
several studies of applying blockchain technologies to

crowdsensing systems. In particular, Li et al. [9] conceptual-
ized a crowdsourcing based on blockchain framework
(CrowdBC) to guarantee system security and offer incen-
tives based on smart contracts, but it cannot assure data
quality and incentives are biased towards workers, thereby
causing free-riding attacks. Cai et al. [18] proposed a private
and verifiable crowdsensing system via public blockchains,
but the system cannot prevent invalid data whose value lies
in the specified range. In addition, Lu et al. [15] designed an
anonymous and accountable blockchain-based crowdsens-
ing system, called ZebraLancer, to guarantee user anonym-
ity, data privacy and incentive fairness.

We summarize a comparison of BlockSense with other
existing crowdsensing platforms in Table 3. It is undeniable
that traditional crowdsensing platforms generally have higher
throughput than blockchain-based platforms. But few of tradi-
tional crowdsensing platforms can handle the issues of incen-
tive fairness, single point failure, and data quality. Especially,
traditional crowdsensing needs a trust chain from users to
platforms, which could cause trust risks due to unfairness and
even evil behaviors of the platforms [10], [11]. By leveraging
the Byzantine-robust consensus protocol and transparent
incentive mechanism of blockchains, it is promising to build a
trustless, fair, robust crowdsensing platform. Even there are
some related work solving partial challenges of blockchain-
based crowdsensing, none of them attempt to improve block-
chain for crowdsensing in the perspective of the underlying
consensus layer.

Proof of Useful Work (PoUW) Consensus. There are some
research concentrating on bridging the gap between useful
work and consensus requirement in the blockchain systems.
For example, Zhang et al. [24] proposed a trusted hardware
(i.e., Intel SGX)-based consensus to conduct useful work
faithfully. To mitigate the risk of SGX-supported CPUs
being compromised, they also designed a statistical
approach to strengthen the consensus security. Ball et al.
[52] also devised a PoUW consensus protocol, which is a
modified PoW whose hardness is based on specific compu-
tational problems, e.g., orthogonal vectors, 3SUM, all-pairs
shortest path. In Primecoin [53], miners compute a sequence
of prime numbers (i.e., Cunningham chain) instead of hash
values to generate new blocks, which is also considered as a
sort of useful work. However, none of existing PoUW con-
sensus protocols bring benefits to crowdsensing systems.

TABLE 3
Comparison Between BlockSense and Other Crowdsensing Platforms

Traditional crowdsensing Blockchain-based crowdsensing

SPIM [14] CrowdBuy [13] CrowdBC [9] Cai et al. [18] ZebraLancer [15] BlockSense

Data Privacy ✗ ✓ ✓ ✓ ✓ ✓
Sybil Attack 
 ✗ ✓ ✓ ✓ ✓
Free-riding and False-reporting ✗ ✗ ✗ ✓ ✓ ✓
Single Point Failure ✗ ✗ ✓ ✓ ✓ ✓
Data Quality ✗ ✗ ✗ 
 ✓ ✓
Blockchain Storage Problem � � ✗ ✗ ✗ ✓
Proof of Useful Work � � ✗ ✗ ✗ ✓

Note: ✓ represents that the threat is eliminated w/o using any centralized trusted arbiter;

 denotes the threat is (partially) eliminated with (w/o) a trusted third-party;
✗ indicates the challenge is still unaddressed;
� means this threat does not apply to a centralized crowdsensing system.
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8 DISCUSSION

Advantages. The most relevant work of this paper is Zebra-
Lancer [15], which also leverages zk-SNARK techniques to
realize verifiable data quality validation. However, Zebra-
Lancer delegates the data validation work to workers
through integrating the zk-SNARK based verification func-
tions in smart contracts, while it is still constructed on PoW-
based blockchains and does not change the phenomenon of
doing “useless” work essentially. In comparison, Block-
Sense enables Proof-of-Useful-Work (PoUW) in the under-
lying blockchain layer through integrating the PoD
consensus for crowdsensing, which delegates the data qual-
ity validation work to miners.

Comparing to ZebraLancer, BlockSense has two superi-
orities: First, BlockSense can largely reduce the workload of
workers, who might use resource-constrained devices, such
as mobile phones. BlockSense delegates the heavy computa-
tion workloads to miners, thereby lowering the barriers to
participation for workers and encourages more users with-
out powerful devices to participate in the system. Second,
BlockSense uses PoD as the underlying consensus protocol,
which fulfills the basic consensus requirements of block-
chains while benefiting the crowdsensing process (known
as the useful work in BlockSense).

Limitations and Future Work. Even though sensory data
generally have good temporal features [32], [33], [34], the
homomorphic data perturbation scheme cannot handle
arbitrary types of sensory data. Since the proposed scheme
utilizes the temporal stability of sensory data to detect out-
liers while preserving data privacy, if the sampling interval
of sensory data is too long, e.g., once an hour or even a day,
the collected sensory data may lose the temporal features,
thereby causing the scheme failing to work well.

To cover more types of data quality measurements in a
privacy-preserving manner, we can leverage secure Multi-
Party Computation (MPC) techniques [54], including secret
sharing, garbled circuits, homomorphic encryption, and
oblivious transfer, to realize private data quality verifica-
tion. However, these techniques still face the challenge of
low computational efficiency, which is impractical for gen-
eral computational purpose. We leave how to design a
light-weight, privacy-preserving, general data quality
assessment framework as our future work.

9 CONCLUSION

In this work, we propose a blockchain-based MCS platform
(BlockSense), which replaces the triangular architecture
with a decentralized blockchain system to achieve a trust-
worthy, secure, reliable, and fair crowdsensing. BlockSense
utilizes the novel consensus protocol PoD, the homomor-
phic data perturbation scheme, and the on-chain and off-
chain joint storage mechanism to ensure system security,
data privacy and incentive fairness. Through experimental
results on a real-world prototype and security analysis, we
demonstrate that BlockSense can improve system reliability
and security while preserving data privacy.

To the best of our knowledge, BlockSense is the first
work to design a beneficial consensus protocol for block-
chain-based MCS systems. Moreover, the proposed proof-

of-data consensus can be further extended to more general
proof-of-useful-work consensus, which is beneficial for
other application areas. We believe that BlockSense can
also be applicable in other scenarios, such as smart
manufacturing, intelligent transportation, and supply
chain management.
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