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1 INTRODUCTION

The rapid growth of vehicles brings the problem of traffic congestion. Shanghai, New York, and Paris, for example,
which are the largest cities in the world, suffer from constant traffic congestion. It is essential for drivers to check the
traffic conditions before going out via navigation applications such as AMAP, Google Maps, BaiduMap, and so forth.

Traditionally, these navigation applications have provided traffic conditions by collecting location data from users
or in-vehicle sensing devices in real time. Due to its openness, malicious users could upload fake data to the data center
intentionally, whichwouldmake navigation applications providemisleading traffic information. As a result, the trans-
portation system falls into chaos. On the other hand, hardware heterogeneity and failure [1] may cause bias or missing
information in collected location data.

In Fig. 1, a snapshot of the road network in downtown Chengdu, which we research in this chapter, is shown. We
collect traffic condition data of these roads fromAMAP [2] every 5min for 24 h. Fig. 2 shows the missing ratio of traffic
condition data. By statistics, 42% of the total data are missing. The large missing ratio and potential faulty values
increase the misleading traffic information. It is significant to discriminate the outliers to guarantee an efficient trans-
portation system, which motivates us to propose a novel method to address it.

Lots of work has been contributed to this field, such as Yoon et al. [3] utilize traffic patterns on a specific road seg-
ment to estimate traffic conditions, which needs large datasets in identifying traffic conditions, and each road, which is
analyzed independently, is not suitable for the real-time environment (e.g., navigation applications). Li et al. [4] pro-
pose a compressive sensing-based method to estimate missing values in urban traffic sensing; however, this method
does not take faulty data into consideration, which may lead to reconstruction deviation. Cheng et al. [5] propose a
DECO framework to improve data quality for crowd-sensing applications. They believe users who have a good rep-
utation will not upload faulty data, which is impractical, too. In summary, although some algorithms andmethods are
proposed to address such problems, few of them are practical in real life.

In this chapter, we propose an outlier discrimination and correction (ODC) method to discriminate faulty data and
reconstruct missing data in traffic condition datasets. Through simulations conducted on traffic condition datasets
from AMAP, we observe that ODC can produce only about a 6 km/h reconstruction error, even with a missing data
ratio β ¼ 50% and faulty data ratio α ¼ 30%.

Our contributions can be summarized as follows:

• We propose the ODC method, which is applied to outlier detection and missing data reconstruction in the field of
traffic information. It only uses single dimension information, that is, the average speed for analysis, so it takes very
little time and is suitable for real time applications.

• Wemine temporal stability and spatial correlation features from traffic condition datasets, and utilize these hidden
structures to improve performance of compressive sensing.

• We evaluate ODC based on real urban traffic condition datasets, demonstrating that it produces low reconstruction
errors, even when the missing ratio is 50% and the faulty ratio is 30% in traffic condition datasets.
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FIG. 1 Road network of Chengdu downtown region.
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FIG. 2 Missing ratio of traffic condition data from AMAP.
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The rest of this chapter is organized as follows. In Section 2, we formulate the problem. In Section 3, we analyze the
hidden structures in traffic condition datasets. The compressive sensing-basedmethod, ODC, is proposed in Section 4.
In Section 5, we evaluate the ODCmethod through real urban traffic traces.We introduce relatedwork in Section 6 and
conclude this chapter in Section 7.
2 PROBLEM FORMULATION

The better traffic conditions are, the higher the driving speed allowed, so we adopt the mean velocity of roads as the
metric for quantifying traffic conditions in this chapter. As shown in Fig. 1, the road network consists of n roads (dif-
ferent directions of the same road are considered different roads). The sensing period includes t time slots. Each road
updates its mean velocity once per time slot by calculating real-time changes of location data from users. x i, jð Þ denotes
the mean velocity of road i at time slot j, where i ¼ 1, 2, …, n and j ¼ 1, 2, …, t.

Definition 1. Traffic ConditionMatrix (TCM) describes the mean velocity of road i in time slot j. TCM is defined by
X¼ x i, jð Þð Þn�t.

Each line ofX represents a time series of mean velocity of one road. And every data point is valid, that is, nomissing
or faulty data points.

Definition 2. Direct SensoryMatrix (DSM) is an n� tmatrix, which containsmean velocity calculated through raw
data, where we may find missing or faulty data points. DSM is denoted by S, defined as follows:

S i, jð Þ¼ s i, jð Þð Þn�t¼
0 if x i, jð Þ is missing
x i, jð Þ+ ξ otherwise

�
(1)

Data error is denoted by ξ, s i, jð Þ is considered a faulty data point if ξj j> η, where η is a predefined threshold, otherwise
as a normal one.
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Definition 3. Faulty Matrix (FM) is an n � t matrix, denoted by F, set F i, jð Þ to 1 if s i, jð Þ is faulty, defined as:

F i, jð Þ¼ 1 if s i, jð Þ is faulty
0 otherwise

�
(2)

Definition 4. Existence Matrix (EM) is denoted by E, represents if x i, jð Þ is collected in S, defined as:

E i, jð Þ¼ ε i, jð Þð Þn�t¼
0 ifx i, jð Þis not inS
1 otherwise

�
(3)

Definition 5. Faulty Data DetectionMatrix (FDM) is an n� tmatrix, denoted byD, marks out the faulty data detected
through the ODC method, defined similar to F.
Definition 6. Reconstruct Matrix (RM) is generated by interpolating the missing or faulty values in DSM to approx-
imate to TCM. RM is defined by X̂ ¼ x̂ i, jð Þð Þn�t.
Definition 7. Binary IndexMatrix (BIM) combines E andD, marks out trusted data, that is, not missing or faulty data.
BIM is denoted by B, defined as:

B¼ b i, jð Þð Þn�t¼E\D (4)

The first problem is to detect faulty data in S, formulated as:
Problem 1 (Faulty Data Detection in Direct Sensory Matrix (FDSM)).
Given S and E, the FDSM problem is to find D, the expectation of D is as close to F as possible. That is,

Objective : min D�Fk kF
Subject to : S,E (5)

where �k kF is the Frobenius norm used to measure the difference between D and F. That is, D�Fk kF¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i, j D i, jð Þ�F i, jð Þð Þ2

q
.

The second problem is to reconstruct the real traffic condition (TCM) based on the sensory data (DSM).
Problem 2 (Traffic Condition Reconstruction in Road Networks (TCRN)).
Given S and B, the TCRN problem is to find the optimal X̂ that approximates X as closely as possible, that is,

Objective : min X� X̂
�� ��

F
Subject to : S,B (6)
3 TRAFFIC CONDITION DATA MINING

We gather the real-time traffic condition data from AMAP [2], which is available on the Internet. The dataset collects
the mean velocity of roads in the Chengdu downtown region, covering a period of 24 h on November 25, 2017. It con-
tains 1487 roads and 288 time slots, with slot intervals of 5 min. However, we cannot utilize the raw data from AMAP
because of the existence of missing and faulty data, which will lead to the lack of ground truth. To generate TCM, we
perform preprocessing and select complete subsets from raw data. The selected subset contains 617 roads � 288 slots.
3.1 Discovery Over Low Rank Structure

The mean velocity of different roads over different times are not independent, there are structures. We reveal the
inherent structure with the singular value decomposition (SVD), which is a kind of factorization of a matrix. SVD is
usually used for creating a low rank matrix approximation. The matrix x i, jð Þð Þn�t can be decomposed as:

X¼UΣVT ¼
Xmin n, tð Þ

i¼1
σiuivTi (7)

where U is an n � n unitary matrix (i.e., UUT ¼ UTU ¼ I), VT is the transpose of an t � t unitary matrix, Σ is an n � t
diagonal matrix with the singular value σi of X on the main diagonal, where σi � σi+1, i¼ 1,2,…, min n, tð Þ.

The matrix is low rank if r≪min n, tð Þ, r is equal to nonzero singular values. σi represents the ith largest singular
value of X, which means X can be approximately denoted by top r singular values.
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FIG. 3 Traffic condition hidden structures mining from the complete subset. (A) Low rank feature; (B) temporal stability feature; (C) spatial cor-
relation feature.
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Xr

i¼1
σi�

Xmin n, tð Þ

i¼1
σi (8)

In Fig. 3A, we illustrate the distribution of singular values in TCM. The X-axis denotes the ith largest singular value,
and theY-axis presents the values of ith singular value, and both of them are normalized. This figure shows that the top
50% singular values contribute the most energy in traffic condition data. This means that TCMhas low rank structures,
which is the prerequisite for using compressive sensing.

3.2 Temporal Stability Feature

The mean velocity of a road changes stably between adjacent timeslots in general when the interval is not too
large. On the basis of this observation, we analyze the traffic condition data in the time dimension to reveal temporal
features. We measure the temporal stability of road i at timeslot j by calculating the difference between adjacent
timeslots as

4x i, jð Þ¼ x i, jð Þ�x i, j�1ð Þj j (9)

The CDF of 4x i, jð Þ is plotted in Fig. 3B. The X-axis denotes difference between adjacent timeslots (normalized), and
the Y-axis presents the cumulative probability of 4x i, jð Þ. We can observe that above 40% 4x i, jð Þ in TCM are 0, and
above 95%4x i, jð Þ are less than 0.2. This indicates that temporal stability exists in TCM. On the basis of this observa-
tion, we can improve the compressive sensing by adding a temporal feature dimension.

3.3 Spatial Correlation Feature

From the road network in Fig. 1, we can observe that there are many adjacent roads, and the mean velocity between
adjacent roads is usually similar. Hence, we can consider the difference from the space dimension.

In traffic condition datasets from AMAP, roads are characterized through polylines, which consist of several lati-
tude and longitude coordinates. Thus, we can utilize these latitude and longitude coordinates to find out if two roads
are adjacent. To illustrate it in mathematical form, the adjacent roads matrix (ARM) is defined as follows:

H a,bð Þ¼ 1 if a and b are adjacent
0 otherwise

�
(10)

where a¼ 1, 2,…, n and b¼ 1, 2,…, n. ARM is an n� nmatrix, denoted byH, which presents the spatial correlation of
any two roads.

Wemeasure the spatial correlation of road i at timeslot j by calculating the difference in mean velocity between road
i and the average of its all adjacent roads. θx i, jð Þ is calculated as:

θx i, jð Þ¼ x i, jð Þ�H i, :ð ÞX : , jð ÞX
H i, :ð Þ

�����
����� (11)

whereH i, :ð Þ is the ith row ofH,X : , jð Þ is the jth column ofX.H i, :ð ÞX : , jð Þ presents the sum values of all adjacent roads
of road i at timeslot j.

P
H i, :ð Þ presents the number of adjacent roads of road i.
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The CDF of θx i, jð Þ is plotted in Fig. 3C. The X-axis depicts the normalized difference in mean velocity between road
i and the average of its all adjacent roads. The Y-axis presents the cumulative possibility. This figure shows that above
80% θx i, jð Þ are smaller than 0.3 and almost all of θx i, jð Þ are smaller than 0.5. This observation indicates that TCM also
has a spatial correlation feature, which means we can improve compressive sensing from a spatial dimension.
4 ODC METHOD BASED ON COMPRESSIVE SENSING

Based on the preceding observations, we propose and detail the ODC method in this section.
4.1 Overview

The ODC method is proposed to discriminate faulty data and correct them in traffic condition datasets. Thus the
ODCmethod consists of twomain procedures, which are discrimination and correction. The ODCmethod is based on
compressive sensing technology, which is effective for reconstruct missing data in structured or redundancy datasets.
However, the result of reconstruction is not so effective when there is massive faulty data in dataset, that is, faulty data
can cause a large deviation during the reconstruction procedure. Therefore, we need to discover faulty data before
correcting to mitigate reconstruction deviation.

Fig. 4 shows the program flow chart of the ODCmethod.We take Direct SensoryMatrix S, ExistenceMatrix E, ARM
H, λ1, λ2, λ3, rank bound r, and iteration times maxIter as inputs and Reconstruct Matrix X̂, and Faulty Data Detection
Matrix D as outputs.D is set to all ones at the beginning of the procedure because the ODCmethod aims to find more
faulty data. There are three main functions in the ODC method, which are FaultyDataDetection(), ASD(), and upda-
teFDM(). The task of FaultyDataDetection() is to discriminate faulty data by utilizing its temporal-spatial correlation,
as we discuss in Sections 3.2 and 3.3, and mark faulty data points in D. Then ODC combines E and D, and marks
out trusted data points in B. B is taken as an input of ASD(), which is to reconstruct missing data in the dataset (faulty
or missing data are both taken as missing data in ASD()). The output of ASD() is Reconstruct Matrix X̂, updateFDM()
compares X̂ and S to update the Faulty Data Detection Matrix D. The ODC method repeats this process until D is not
FIG. 4 ODC method flow chart.
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changed after updating or iteration times have reached maxIter. We will detail these three functions, FaultyDataDetec-
tion(), ASD(), and updateFDM(), in the rest of this section, that is, the Optimization of Compressive Sensing and Faulty
Data Detection Approach Based on the Temporal Stability Feature.
4.2 Optimization of Compressive Sensing

Compressive sensing is known as an effective technique to reconstruct missing data for sparse matrices. The main
idea of compressive sensing is that datasets in the real world often contain structures or redundancy, which we have
revealed in Section 3.1 for traffic condition datasets. Thus, we utilize compressive sensing to compute an estimate of
traffic condition matrix X̂ that approximates the real traffic condition matrix X.

Because of the low rank feature ofX, we can approximately representX by its r largest singular values. According to
Eqs. (7), (8), we can approximately represent X as

X̂ ¼
Xr

i¼1
σiuivTi (12)

Actually, X̂ is the best r-rank approximation that minimizes the Frobenius norm between X and X̂.
However, it is impossible to directly find the X̂, because we do not know X and the proper rank. Thus, we can

alternatively solve the following rank minimization problem:

Objective : min rank X̂
� �� �

Subject to : X̂∘B¼ S (13)

where ∘ refers to the Hadamard product (X̂∘B¼ S means X̂ i, jð ÞB i, jð Þ¼ S i, jð Þ).
However, it is difficult to solve this minimization problem because it is nonconvex. To address this difficulty, we

make use of the SVD-like factorization of X̂:

X̂ ¼UΣV¼ LRT (14)

where L ¼ UΣ1/2 and R ¼ V Σ1/2. According to the compressive sensing theory, if the restricted isometry property [6]
holds, minimizing the nuclear form [7–9] can perform rank minimization exactly for a low rank matrix, that is, we just
find matrix L and R that minimize the summation of their Frobenius norms as:

Objective : min Lk k2F + Rk k2F
� �

Subject to : LRT
� 	

∘B¼ S (15)

In practice, L and R that strictly satisfy the constraint are likely to fail for two reasons. First, there are noises in the
sensory data that may lead to the over-fit problem. Second, TCM can be a low rankmatrix, although it may not exactly
be low ranking. Thus, we use the Lagrange multiplier to relax the constraint:

min LRT
� 	

∘B�S
�� ��2

F + λ1 Lk k2F + Rk k2F
� �� �

(16)

where λ1 controls the trade-off between rank minimization and accuracy fitness.
Although the performance of compressive sensing relies on low rank structure, it can also be improved by taking

temporal stability and spatial correlation into consideration.

4.2.1 Temporal Stability Improvement

The temporal constraint matrix  is defined as:

¼

1 �1 0 ⋯ 0
0 1 �1 ⋱ ⋮
0 0 1 ⋱ 0
⋮ ⋮ ⋱ ⋱ �1
�1 0 0 ⋯ 1

2
66664

3
77775
t�t

(17)

which describes the difference between two consecutive timeslots.



2094 ODC METHOD BASED ON COMPRESSIVE SENSING
LRT captures temporal stability of the traffic condition dataset, which we have revealed in Section 3.2. Hence, we
can introduce the temporal constraint LRT

�� ��2
F into Eq. (16) to filter more noises and errors.

4.2.2 Spatial Correlation Improvement

The spatial constraint matrix is denoted by , which outlines the difference between adjacent roads at the same
timeslot; its definition is similar to  in [10].

 indeed is a transformation of the ARM H: (1) The central diagonal of  is given by  i, ið Þ¼ �PH i, :ð Þð Þ, where
H i, :ð Þmeans the ith row in H. Other elements in  are the same as H. (2) Normalize rows of  and we get the final 
transformed from H. For example, if there is an ARM H:

H¼
0 0 1
1 0 1
1 0 0

2
4

3
5 (18)

after the preceding steps of transformation, the spatial constraint matrix is:

¼
1 0 �1
1
2

1
1
2

�1 0 1

2
664

3
775 (19)

It is obvious that LRT represents the difference between road i and the average value of its adjacent roads. Similar to
LRT, LRT captures spatial correlation of the traffic condition dataset, which has been mined in Section 3.3. We can
also introduce the spatial constraint LRT

�� ��2
F into Eq. (16) to help make a more accurate estimation of LRT.

Hence, after exploiting the temporal-spatial stability features in the traffic condition dataset, we optimize the com-
pressive sensing approach by developing Eq. (16) as:

min LRT
� 	

∘B�S
�� ��2

F + λ1 Lk k2F + Rk k2F
� �

+ λ2 LRT
�� ��2

F + λ3 LRT
�� ��2

F

� �
(20)

where λ2 and λ3 are used as the scaling of LRT
�� ��2

F and LRT
�� ��2

F.

4.2.3 Optimized Compressive Sensing Algorithm

The target of the optimized compressive sensing algorithm is to find L and R that minimize Eq. (20). We define the
objective function as

f L,Rð Þ¼ LRT
� 	

∘B�S
�� ��2

F + λ1 Lk k2F + Rk k2F
� �

+ λ2 LRT
�� ��2

F + λ3 LRT
�� ��2

F (21)

It is obvious that f L,Rð Þ is nonconvex. However, if we fix L or R, the function on the other variables is convex. Thus, we
utilize the alternating steepest descent (ASD) algorithm [11, 12] to do theminimization, which is commonly used in the
low rank matrix completion. The pseudo code of ASD is shown in Algorithm 1, Σr means the first r columns of Σ.

The main idea of ASD is to apply the steepest gradient descent to f L,Rð Þ with respect to L and R. First, L and R are
randomly initialized. Thenwe fix L and updateR by using a single step of simple line search along the gradient descent
direction. And next, we fix R and update L using a similar approach. This process is repeated until convergence
(we consider it is convergent when the change of the function value is less than a threshold).

To detail the line search along the gradient descent directions, we denote

f L,Rð Þ¼ f1 L,Rð Þ+ f2 L,Rð Þ+ f3 L,Rð Þ+ f4 L,Rð Þ (22)

where

f1 L,Rð Þ¼ LRT
� 	

∘B�S
�� ��2

F

f2 L,Rð Þ¼ λ1 Lk k2F + Rk k2F
� �

f3 L,Rð Þ¼ λ2 LRT
�� ��2

F

f4 L,Rð Þ¼ λ3 LRT
�� ��2

F

The gradient descent directions are

rl¼r1
l +r2

l +r3
l +r4

l

rr¼r1
r +r2

r +r3
r +r4

r

(23)



ALGORITHM 1

A L T E RNAT ING S T E E P E S T D E S C ENT : A SD ( )

Require: Direct Sensory Matrix S, Binary Index Matrix
B, , , λ1, λ2, λ3, rank bound r

Ensure: Reconstruct Matrix X̂
1: ½n, t� sizeðSÞ;
2: S

0  S;
3: for S

0
i, jð Þ in S0 do

4: if B i, jð Þ¼ 0 then
5: S

0
i, jð Þ average of two nearest values;

6: end if
7: end for
8: ½U,Σ,V� SVDðS0 Þ;
9: L U �Σ1=2

r ;

10: R V �Σ1=2
r ;

11: repeat
12: β1 f L,Rð Þ;
13: Calculate rl and rr according to Eq. (25);
14: αl arg min t f L�αrl,Rð Þ;
15: αr arg min t f L,R�αrrð Þ;
16: L L�αlrl;
17: R R�αrrr;
18: until β2�β1

β1
< threshold;

19: X̂ L �RT ;
20: return X̂ ;
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where

r1
l ¼ 2 LRT

� 	
∘B�S

� 	
R

r2
l ¼ 2λ1L

r3
l ¼ 2λ2TLRTR

r4
l ¼ 2λ3LRTTR

r1
r ¼ 2 RLT

� 	
∘BT�ST

� 	
L

r2
r ¼ 2λ1R

r3
r ¼ 2λ2RLTTL

r4
r ¼ 2λ3TRLTL

The steepest descent along L and R are selected to minimize the updated value of f L,Rð Þ along the directionrl andrr,
respectively. We denote αl and αr as the steepest descent stepsize along the gradient descent directions. Thus, the
values of L and R are updated as:

L¼ L�αlrl
R¼R�αrrr

(24)

αl and αr are selected to minimize the value of f L,Rð Þ along the direction rl and rr, that is,

αl¼ arg min
t

f L�αrl,Rð Þ
αr¼ arg min

t
f L,R�αrrð Þ (25)

We differentiate the f and set it to zero, then we can solve αl and αr.
However, considering f L,Rð Þ is nonconvex, ASD may converge to a local optimal point. To mitigate this, we ini-

tialize the value of L andR by: (1) Let S0 ¼ S and themissing data points in S0 are replacedwith the average value of two
nearest existing values. (2) Use SVD to decompose the S0 and compute the L and R. In this way, we can get the opti-
mized L and R with closer starting points to the optimal one, which mitigates the local optimal problem.
4.3 Faulty Data Detection Approach Based on the Temporal Stability Feature

The Faulty Data Detection Approach is based on the temporal stability of the traffic condition dataset. In Fig. 3B, we
can observe that the traffic condition dataset has good temporal stability features (difference between consecutive
timeslots of >95% data are <20%). Thus, we can utilize this feature to discriminate faulty data before reconstruction
and make D closer to F at the start point.



ALGORITHM 2

F AU LT YDATADET E CT I ON ( )

Require: Direct Sensory Matrix S, Existence Matrix E,
Faulty Data Detection Matrix D

Ensure: Faulty Data Detection Matrix D
1: ½n, t� sizeðSÞ;
2: T¼ S;
3: for i 1to ndo
4: for j 1to tdo
5: if E i, jð Þ¼ 0or D i, jð Þ¼ 0then
6: continue ;
7: end if
8: el new ArrayðÞ;
9: for k j� window=2b cto j+ window=2b cdo

10: if k 6¼jand E i, jð Þ 6¼ 0and D i, jð Þ 6¼ 0then
11: el ½el,Tði,kÞ�;
12: end if
13: end for
14: ratio¼ maxðelÞ�minðelÞ;
15: m ¼ mean(el);
16: if Tði,kÞ�mj j< ratio=2then
17: D i, jð Þ 0;
18: end if
19: end for
20: end for
21: return D;
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The difference between consecutive timeslots is formulated in Eq. (9). Thus we can introduce matrix T to store the
difference between the consecutive timeslots in each road, which is calculated as T¼X, where  is defined in Eq. (17),
T(i, j) represents the difference between X(i, j � 1) and X(i, j).

The pseudo code of the Faulty Data Detection Approach is shown in Algorithm 2. The main idea of the faulty data
detection method is to calculate the average value of the difference between consecutive timeslots in ith road, and
compare it with T(i, j), if the difference between them is less than the dynamic threshold, X(i, j) is considered normal
data. The threshold is determined by the largest variation range in each road. But considering that change gradients
differ at different times of a day, we further refine the 288 timeslots into several segments withwindowwidth so that we
can make the threshold more precisely. So we calculate the ratio as Algorithm 2 in each loop, and compare T(i, j) with
the average value of points in the range of the window to judge whether X(i, j) is normal data or not.D is initialized as
all ones for the first time its executed, thismay cause some normal data to bemisjudged. Nevertheless, the aim ofD is to
mark out faulty data as much as possible, and this also ensures the convergence of the ODC method.

Other than detecting faulty data before reconstruction, we need to updateD according to estimated X̂ after that. We
need a n � t matrix to record the difference between X and X̂, which is defined as:

δn�t¼ X� X̂
�� �� (26)

If δ i, jð Þ is less than lower threshold thresl and D i, jð Þ is 1, we set it to 0. If δ i, jð Þ is larger than the upper threshold thresu
and D i, jð Þ is 0, we set it to 1. thresl and thresu depend on the tolerance of data deviation. No operation will be done if
X i, jð Þ is a missing data point (i.e., E i, jð Þ is 0). The pseudo code of updateFDM() is shown in Algorithm 3.
ALGORITHM 3

UPDATE FDM ( )

Require: Direct Sensory Matrix S, Existence Matrix E,
Faulty Data Detection Matrix D, Reconstructed Matrix
X̂

Ensure: Faulty Data Detection Matrix D
1: for i 1to ndo
2: for i 1to tdo
3: if E i, jð Þ¼ 0then
4: continue ;
5: end if

6: if δ < thresland D i, jð Þ¼ 1then
7: D i, jð Þ¼ 0;
8: end if
9: if δ > thresuand D i, jð Þ¼ 0then
10: D i, jð Þ¼ 1;
11: end if
12: end for
13: end for
14: return D;
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5 PERFORMANCE EVALUATION

5.1 Evaluation Settings

Dataset for evaluation is the same as Section 3. We select a complete subset that contains 617 roads � 288 slots, with
slot intervals of 5 min.

Generation of missing and faulty data: For the generation of missing data, we rely on the generation of Existence
Matrix E. We set E to all ones first, then select a fraction of elements randomly in E and set them to zeros with the
control of missing ratio (β) predefined. The generation of faulty data is done in a similar way. We set Faulty Data
Matrix F to all zeros at first, and then select a fraction of elements to ones with the control of faulty ratio (α). Besides
that we add a random bias ξ to corresponding elements in X, which are marked as faulty data. Thus, we can get the
Direct Sensory Matrix S as:

S i, jð Þ¼X i, jð ÞE i, jð Þ+ ξi, j � F i, jð Þ (27)

where ξi, j means the random value of bias here.
Evaluation criteria: The performance of ODC will be analyzed in faulty data discrimination and missing data recon-

struction. For faulty data discrimination, we evaluate the performance through Precision, Recall, and Accuracy, which
are defined as:

Precision¼ TP
TP+ FP

, Recall¼ TP
TP+FN

, Accuracy¼ TP+TN
TP+ FP+TN + FN

(28)

where TP, FP, TN, and FN are:

• True Positive: considered faulty data, and indeed, is faulty data
• False Positive: considered faulty data, but indeed, is normal data
• True Negative: considered normal data, and indeed, is normal data
• False Negative: considered normal data, but indeed, is faulty data

For missing data reconstruction, we evaluate the performance through ER, which represents the average values of
reconstruction errors in missing and faulty data, which is defined as:

ER¼

X
where B i, jð Þ¼0

X i, jð Þ� X̂ i, jð Þ�� ��
X

where B i, jð Þ¼0
1

(29)

To verify the effectiveness of the ODC method, we select another two methods when evaluating the performance in
faulty data discrimination for comparison:

• ODC-without-HT: ODC method without temporal-spatial improvement.
• FDD: The faulty data detection method that is proposed in Section 4.3.

And another three methods when evaluating missing data reconstruction:

• ODC-without-HT: ODC method without temporal-spatial improvement.
• ASD: Compressive sensing algorithm applied in ODC, which is used for reconstructing missing data.
• ASD-without-HT: This is similar to ASD, the difference is that they are not improved by temporal-spatial features.
5.2 Performance Analysis: Faulty Data Discrimination

In this section, we evaluate the performance in faulty data discrimination. We conduct three experiments in this
evaluation, where missing data ratio β ¼ 10%, 30%, and 50%, respectively, and faulty data ratio α varies from
10% to 50% in each experiment. The result of evaluation is shown in Fig. 5.

We observe that the performance of ODC-like methods in precision is better than FDD, and the gap between ODC
and ODC-without-HT is not large. Comparing with Fig. 5A–C, we can observe that precision reaches the maximum
valuewhen the faulty data ratio α¼ 30%, and precision decreaseswith the growth ofmissing data ratio β on thewhole.
Because of the intervals of traffic information from the AMAP update is a bit long (i.e., 5 min), the variation range of
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mean velocity cannot bewell defined, which leads to discriminating faulty datawith difficulty. But it is clear that ODC-
like methods do help to improve faulty data discrimination.

The recall of threemethods decreasewith the growth of the faulty data ratio, and the gap among them is not large. In
terms of accuracy, we can observe that ODC-like methods outperform the FDD method. The accuracy of ODC-like
methods is above 80% when faulty ratio α � 30% and missing ratio β � 30%, even when missing ratio is 50%, there
remains nearly 80% accuracy in ODC-like methods.

In summary, the differences of reconstruction in ODC-like methods do not influence the performance of faulty data
discrimination much, and ODC-like methods outperform FDD method in terms of precision and accuracy on
the whole.
5.3 Performance Analysis: Missing Data Reconstruction

In this section, we evaluate the performance in missing data reconstruction. The experiments are conducted when
missing data ratio β ¼ 10%, 30%, and 50%, and faulty data ratio α varies from 10% to 50% in each experiment. The
result is shown in Fig. 6. It is obvious that the ODC method outperforms another three methods.

In Fig. 6, we can observe that when the faulty ratio is small (i.e., α¼ 10%), the performance of ODC and ODC-with-
out-HT are almost the same. And the gap of the reconstruction error between ODC and ODC-without-HT increase
with the growth of the faulty data ratio. We notice that when the faulty ratio �20%, the performance of
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ODC-without-HT is better than ASD. However, when the faulty ratio is larger than 20%, ASD outperforms
ODC-without-HT. We can conclude that temporal-spatial features play an important role in improving performance
of missing data reconstruction.

The reconstruction error of theODCmethod is only about 6 km/h, evenwhen faulty ratio α¼ 30% andmissing ratio
β¼ 50%, which can be tolerated. The performance of ODC is improved by about 15% comparedwithASD-without-HT
on average.
5.4 Convergence of ODC

We analyze the convergence rate of ODC at last. Fig. 7 shows that when missing ratio β ¼ 30%, faulty ratio varies
from 10% to 50%, the precision will be convergent within five times of iterations. We can notice that the first three
iterations contribute to nearly all improvement, and later iterations contribute to little improvement. Thus we can con-
clude that the convergence of ODC is good.
6 RELATED WORK

The rapid growth in the number of motor vehicles causes heavy traffic jams, drivers are now mostly dependent on
navigation applications before going out. But missing data and faulty data are common in data from sensors
[10, 13, 14]. There is a great deal of research in this area.

SEER [15] figure out the redundancy of traffic datasets and utilize multichannel singular spectrum analysis to
recover missing data. However, SEER does not take faulty data into consideration. The traditional outlier detection
technique [16, 17] can be an alternative method for faulty data detection, but this technique cannot tolerate a high rate
of missing data. Yoon et al. [3] estimate traffic conditions through traces of vehicles in each road segment, which needs
large amounts of data to build a road segment model. And each road segment can only be analyzed independently,
which is not suitable for real-time applications. Cheng et al. [5] propose the DECO model, and utilize compressive
sensing techniques to reconstruct missing data, and detect faulty data based on users’ reputations. They believe that
users who have a good reputation will not upload faulty data, which may not necessarily be true.
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Although some methods and algorithms have been proposed, few of them can effectively exploit the hidden struc-
tures in traffic condition datasets. The compressive sensing [18, 19] technique can tolerate a high rate of missing data,
and is good for recovering missing data in a low rank matrix. However, a compressive sensing technique cannot be
directly applied to traffic condition datasets because of the existence of faulty data, which may lead to reconstruction
deviation [20]. Thus, we need to discriminate faulty data before recovering missing data.
7 CONCLUSION

In this chapter, we proposed an ODC method to discriminate misleading information and correct missing data in
intelligent transportation systems. First, we uncovered the common problem that misleading andmissing information
exists in traffic condition datasets. Then we mined the hidden structures in traffic condition datasets, such as the low
rank feature, and temporal-spatial correlation. On the basis of these observations, we have designed an outlier detec-
tion method to discriminate faulty data. And then we utilized temporal-spatial features to improve performance in
missing data reconstruction based on a compressive sensing technique. Extensive evaluations are conducted using
real urban traffic datasets, which demonstrates that ODC can produce only about a 6 km/h reconstruction error, even
when the missing ratio is 50% and the faulty ratio is 30%.

In this work, we only utilize a single dimension of traffic conditions (i.e., the mean velocity of roads), which brings
limited improvement. In the future, we can mine more dimensions of traffic conditions by using raw GPS data col-
lected from vehicles, such as the number of vehicles on each road, and the headway directions. Also, we can utilize
some information frommap data such as lanes of roads, road speed limitations, locations of traffic lights, and so forth,
which can help us improve performance in discrimination and correction.
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